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Preface

Convexity is very easy to define, to visualize and to get an intuition about. A set is

called convex if for every two points a and b in the set, the straight line interval [a, b]
is also in the set. Thus the main building block of convexity theory is a straight

line interval.

a b

Convexity is more intuitive than, say, linear algebra. In linear algebra, the

interval is replaced by the whole straight line. We have some difficulty visualizing

a straight line because it runs unchecked in both directions.

On the other hand, the structure of convexity is richer than that of linear

algebra. It is already evident in the fact that all points on the line are alike whereas

the interval has two points, a and b, which clearly stand out.

Indeed, convexity has an immensely rich structure and numerous applica-

tions. On the other hand, almost every “convex” idea can be explained by a

two-dimensional picture. There must be some reason for that apart from the tau-

tological one that all our pictures are two-dimensional. One possible explanation is

that since the definition of a convex set involves only three points (the two points a
and b and a typical point x of the interval) and every three points lie in some plane,

whenever we invoke a convexity argument in our reasoning, it can be properly pic-

tured (moreover, since our three points a, b and x lie on the same line, we have

room for a fourth point which often plays the role of the origin). Simplicity, intu-

itive appeal and universality of applications make teaching convexity (and writing

a book on convexity) a rather gratifying experience.

About this book. This book grew out of sets of lecture notes for graduate courses

that I taught at the University of Michigan in Ann Arbor since 1994. Conse-

quently, this is a graduate textbook. The textbook covers several directions, which,

vii
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viii Preface

although not independent, provide enough material for several one-semester three-

credit courses.

One possibility is to follow discrete and combinatorial aspects of convexity:

combinatorial properties of convex sets (Chapter I) – the structure of some in-

teresting polytopes and polyhedra (the first part of Chapter II, some results of

Chapter IV and Chapter VI) – lattice points and convex bodies (Chapter VII) –

lattice points and polyhedra (Chapter VIII).

Another possibility is to follow the analytic line: basic properties of convex

sets (Chapter I) – the structure of some interesting non-polyhedral convex sets,

such as the moment cone, the cone of non-negative polynomials and the cone of

positive semidefinite matrices (Chapter II and some results of Chapter IV) – metric

properties of convex bodies (Chapter V).

Yet another possibility is to follow infinite-dimensional and dimension-free ap-

plications of convexity: basic properties of convex sets in a vector space (Chapter

I) – separation theorems and the structure of some interesting infinite-dimensional

convex sets (Chapter III) – linear inequalities and linear programming in an ab-

stract setting (Chapter IV).

The main focus of the book is on applications of convexity rather than on study-

ing convexity for its own sake. Consequently, mathematical applications range from

analysis and probability to algebra to combinatorics to number theory. Finite- and

infinite-dimensional optimization problems, such as the Transportation Problem,

the Diet Problem, problems of optimal control, statistics and approximation are

discussed as well.

The choice of topics covered in the book is entirely subjective. It is probably

impossible to write a textbook that covers “all” convexity just as it is impossible

to write a textbook that covers all mathematics. I don’t even presume to claim to

cover all “essential” or “important” aspects of convexity, although I believe that

many of the topics discussed in the book belong to both categories.

The audience. The book is intended for graduate students in mathematics and

other fields such as operations research, electrical engineering and computer science.

That was the typical audience for the courses that I taught. This is, of course,

reflected in the selection of topics covered in the book. Also, a significant portion

of the material is suitable for undergraduates.

Prerequisites. The main prerequisite is linear algebra, especially the coordinate-

free linear algebra. Knowledge of basic linear algebra should be sufficient for un-

derstanding the main convexity results (called “Theorems”) and solving problems

which address convex properties per se.

In many places, knowledge of some basic analysis and topology is needed. In

most cases, some general understanding coupled with basic computational skills

will be sufficient. For example, when it comes to the topology of Euclidean space,

it suffices to know that a set in Euclidean space is compact if and only if it is closed

and bounded and that a linear functional attains its maximum and minimum on

such a set. Whenever the book says “Lebesgue integral” or “Borel set”, it does so

for the sake of brevity and means, roughly, “the integral makes sense” and “the
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Preface ix

set is nice and behaves predictably”. For the most part, the only properties of

the integral that the book uses are linearity (the integral of a linear combination

of two functions is the linear combination of the integrals of the functions) and

monotonicity (the integral of a non-negative function is non-negative). The relative

abundance of integrals in a textbook on convexity is explained by the fact that the

most natural way to define a linear functional is by using an integral of some sort. A

few exercises openly require some additional skills (knowledge of functional analysis

or representation theory).

When it comes to applications (often called “Propositions”), the reader is ex-

pected to have some knowledge in the general area which concerns the application.

Style. The numbering in each chapter is consecutive: for example, Theorem 2.1

is followed by Definition 2.2 which is followed by Theorem 2.3. When a reference

is made to another chapter, a roman numeral is included: for example, if Theorem

2.1 of Chapter I is referenced in Chapter III, it will be referred to as Theorem

I.2.1. Definitions, theorems and other numbered objects in the text (except figures)

are usually followed by a set of problems (exercises). For example, Problem 5

following Definition 2.6 in Chapter II will be referred to as Problem 5 of Section

2.6 from within Chapter II and as Problem 5 of Section II.2.6 from everywhere else

in the book. Figures are numbered consecutively throughout the book. There is a

certain difference between “Theorems” and “Propositions”. Theorems state some

general and fundamental convex properties or, in some cases, are called “Theorems”

historically. Propositions describe properties of particular convex sets or refer to

an application.

Problems. There are three kinds of problems in the text. The problems marked

by ∗ are deemed difficult (they may be so marked simply because the author is

unaware of an easy solution). Problems with straightforward solutions are marked

by ◦. Solving a problem marked by ◦ is essential for understanding the material and

its result may be used in the future. Some problems are not marked at all. There are

no solutions at the end of the book and there is no accompanying solution manual

(that I am aware of) , which, in my opinion, makes the book rather convenient for

use in courses where grades are given. On the other hand, many of the difficult

and some of the easy problems used later in the text are supplied with a hint to a

solution.

Acknowledgment. My greatest intellectual debt is to my teacher A.M. Vershik.

As a student, I took his courses on convexity and linear programming. Later, we

discussed various topics in convex analysis and geometry and he shared his notes

on the subject with me. We planned to write a book on convexity together and

actually started to write one (in Russian), but the project was effectively terminated

by my relocation to the United States. The overall plan, structure and scope of

the book have changed since then, although much has remained the same. All

unfortunate choices, mistakes, typos, blunders and other slips in the text are my

own. A.M. Vershik always insisted on a “dimension-free”approach to convexity,

whenever possible, which simplifies and makes transparent many fundamental facts,

and on stressing the idea of duality in the broadest sense. In particular, I learned

the algebraic approach to the Hahn-Banach Theorem (Sections II.1, III.1–3) and
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the general view of infinite-dimensional linear programming (Chapter IV) from

him. This approach makes the exposition rather simple and elegant. It makes it

possible to deduce a variety of strong duality results from a single simple theorem

(Theorem IV.7.2). My interest in quadratic convexity (Section II.14) and other

“hidden convexity” results (Section III.7) was inspired by him. He also encouraged

my preoccupation with lattice points (Chapter VIII) and various peculiar polytopes

(Sections II.5–7).

On various stages of the project I received encouragement from A. Björner, L.

Billera, R. Pollack, V. Klee, J.E. Goodman, G. Kalai, A. Frieze, L. Lovász, W.T.

Gowers and I. Bárány.

I am grateful to my colleagues in the Department of Mathematics at the Univer-

sity of Michigan in Ann Arbor, especially to P. Hanlon, B.A. Taylor, J. Stembridge

and S. Fomin with whose blessings I promoted convexity within the Michigan com-

binatorics curriculum. I thank the students who took Math 669 convexity classes

in 1994–2001. Special thanks to G. Blekherman who contributed some of his in-

teresting results on the metric structure of the set of non-negative multivariate

polynomials (Problems 8 and 9 of Section V.2.4).

Since the draft of this book was posted on the web, I received very useful

and detailed comments from R. Connelly, N. Ivanov, J. Lawrence, L. Lovász, G.

Ziegler and A.M. Vershik. I am particularly grateful to J. Lawrence who suggested

a number of essential improvements, among them are the greater generality of

the “polarity as a valuation” theorem (Theorem IV.1.5), a simplified proof of the

Euler-Poincaré Formula (Corollary VI.3.2) and an elegant proof of Gram’s relations

(Problem 1 of Section VIII.4.4) and many mathematical, stylistic and bibliograph-

ical corrections.

I thank A. Yong for reading the whole manuscript carefully and suggesting

numerous mathematical and stylistic corrections. I thank M. Wendt for catching a

mistake and alerting me by e-mail.

I thank S. Gelfand (AMS) for insisting over a number of years that I write the

book and for believing that I was able to finish it.

I am grateful to the National Science Foundation for its support.

Ann Arbor, 2002

Alexander Barvinok
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Chapter I

Convex Sets at Large

We define convex sets and explore some of their fundamental properties. In this

chapter, we are interested in the “global” properties of convex sets as opposed to the

“local” properties studied in the next chapter. Namely, we are interested in what

a convex set looks like as a whole, how convex sets may intersect and how they be-

have with respect to linear transformations. In contrast, in the next chapter, we will

discuss what a convex set looks like in a neighborhood of a point. The landmark

results of this chapter are classical theorems of Carathéodory, Radon and Helly

and the geometric construction of the Euler characteristic. We apply our results

to study positive multivariate polynomials, the problem of uniform (Chebyshev)

approximation and some interesting valuations on convex sets, such as the intrin-

sic volumes. Exercises address some other applications (such as the Gauss-Lucas

Theorem), discuss various ramifications of the main results (such as the Fractional

Helly Theorem or the Colored Carathéodory Theorem) and preview some of the

results of the next chapters (such as the Brickman Theorem, the Schur-Horn Theo-

rem and the Birkhoff-von Neumann Theorem). We introduce two important classes

of convex sets, polytopes and polyhedra, discussed throughout the book.

1. Convex Sets. Main Definitions, Some Interesting

Examples and Problems

First, we set the stage where the action is taking place. Much of the action, though

definitely not all, happens in Euclidean space R
d.

(1.1) Euclidean space. The d-dimensional Euclidean space R
d consists of all d-

tuples x = (ξ1, . . . , ξd) of real numbers. We call an element of Rd a vector or (more

often) a point. We can add points: we say that

z = x+ y for x = (ξ1, . . . , ξd), y = (η1, . . . , ηd) and z = (ζ1, . . . , ζd),

1

http://dx.doi.org/10.1090/gsm/054/01
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2 I. Convex Sets at Large

provided

ζi = ξi + ηi for i = 1, . . . , d.

We can multiply a point by a real number:

if x = (ξ1, . . . , ξd) and α is a real number,

then

αx = (αξ1, . . . , αξd)

is a point from R
d. We consider the scalar product in R

d:

〈x, y〉 = ξ1η1 + . . .+ ξdηd, where x = (ξ1, . . . , ξd) and y = (η1, . . . , ηd).

We define the (Euclidean) norm

‖x‖ =

√
ξ21 + . . .+ ξ2d

of a point x = (ξ1, . . . , ξd) and the distance between two points x and y:

dist(x, y) = ‖x− y‖ for x, y ∈ R
d.

Later in the text we will need volume. We do not define volume formally (that

would lead us too far away from the main direction of this book). Nevertheless,

we assume that the reader is familiar with elementary properties of the volume (cf.

Section 8.3). The volume of a set A ⊂ R
d is denoted volA or vold A.

Let us introduce the central concept of the book.

(1.2) Convex sets, convex combinations and convex hulls.

Let {x1, . . . , xm} be a finite set of points from R
d. A point

x =

m∑
i=1

αixi, where

m∑
i=1

αi = 1 and αi ≥ 0 for i = 1, . . . ,m

is called a convex combination of x1, . . . , xm. Given two distinct points x, y ∈ R
d,

the set

[x, y] =
{
αx+ (1− α)y : 0 ≤ α ≤ 1

}

of all convex combinations of x and y is called the interval with endpoints x and

y. A set A ⊂ R
d is called convex, provided [x, y] ⊂ A for any two x, y ∈ A, or in

words: a set is convex if and only if for every two points it contains the interval

that connects them. We agree that the empty set ∅ is convex. For A ⊂ R
d, the

set of all convex combinations of points from A is called the convex hull of A and

denoted conv(A). We will see that conv(A) is the smallest convex set containing A
(Theorem 2.1).
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1. Convex Sets 3

(1.3) Some interesting examples. Sometimes, it is very easy to see whether

the set is convex or not (see Figure 1).

convex convex non-convex

Figure 1. Two convex and one non-convex set

Sometimes, however, this is not so easy to see (cf. Problems 3, 4 and 5 below),

or a convex set may have a number of equivalent descriptions and their equivalence

may be not obvious (cf. Problems 6 and 7 below).

PROBLEMS.

We will encounter many of the harder problems later in the text.

1◦. Prove that the convex hull of a set is a convex set.

2◦. Let c1, . . . , cm be vectors from R
d and let β1, . . . , βm be numbers. The set

A =
{
x ∈ R

d : 〈ci, x〉 ≤ βi for i = 1, . . . ,m
}

is called a polyhedron. Prove that a polyhedron is a convex set.

3. Let v1, . . . , vm ∈ R
d be points. Let us fix positive numbers ρ1, . . . , ρm and

let us define a map: H : Rd −→ R
d by

H(x) =
1

f(x)

m∑
i=1

ρi exp
{
〈x, vi〉

}
vi, where f(x) =

m∑
i=1

ρi exp
{
〈x, vi〉

}
.

a◦) Prove that the image of H lies in the convex hull of v1, . . . , vm.

b∗) Prove that the image of H is convex and that for any ε > 0 and for any

y ∈ conv
(
v1, . . . , vm

)
there exists an x ∈ R

d such that dist
(
H(x), y

)
< ε.
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4 I. Convex Sets at Large

c∗) Assume that one cannot find a non-zero vector c ∈ R
d and a number α such

that 〈c, vi〉 = α for i = 1, . . . ,m. Prove that H is injective.

Remark: The map H is an example of a moment map; see Chapter 4 of [F93].

4∗ (The Brickman Theorem). Let q1, q2 : Rn −→ R be quadratic forms and let

S
n−1 =

{
x ∈ R

n : ‖x‖ = 1
}
be the unit sphere. Consider the map T : Rn −→ R

2,

T (x) =
(
q1(x), q2(x)

)
. Prove that the image T (Sn−1) of the sphere is a convex set

in R
2, provided n > 2.

Remark: We prove this in Chapter II (see Theorem II.14.1).

5∗ (The Schur-Horn Theorem). For an n×n real symmetric matrix A = (αij),

let diag(A) = (α11, . . . , αnn) be the diagonal of A, considered as a vector from R
n.

Let us fix real numbers λ1, . . . , λn. Consider the set X ⊂ R
n of all diagonals of

n × n real symmetric matrices with the eigenvalues λ1, . . . , λn. Prove that X is

a convex set. Furthermore, let l = (λ1, . . . , λn) be the vector of eigenvalues, so

l ∈ R
n. For a permutation σ of the set {1, . . . , n}, let lσ = (λσ(1), . . . , λσ(n)) be

the vector with the permuted coordinates. Prove that

X = conv
(
lσ : σ ranges over all n! permutations of the set {1, . . . , n}

)
.

Remark: See Theorem II.6.2.

6 (The Birkhoff - von Neumann Theorem). For a permutation σ of the set

{1, . . . , n}, let us define the n× n permutation matrix Xσ = (ξσij) as

ξσij =

{
1 if σ(j) = i,

0 if σ(j) �= i.

Prove that the convex hull of all n! permutation matrices Xσ is the set of all n×n
doubly stochastic matrices, that is, matrices X = (ξij), where

n∑
i=1

ξij = 1 for all j,

n∑
j=1

ξij = 1 for all i and

ξij ≥ 0 for all i, j.

We consider an n× n matrix X as a point in R
n2

.

Remark: We prove this in Chapter II (see Theorem II.5.2).

7. Let us fix an even number n = 2m and let us interpret Rn+1 as the space of

all polynomials p(τ ) = α0 + α1τ + . . . + αnτ
n of degree at most n in one variable

τ . Let

K =
{
p ∈ R

n+1 : p(τ ) ≥ 0 for all τ ∈ R

}

be the set of all non-negative polynomials. Prove that K is a convex set and that K
is the set of all polynomials that are representable as sums of squares of polynomials

of degree at most m:

K =
{ k∑

i=1

q2i , where deg qi ≤ m
}
.
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1. Convex Sets 5

Remark: See Section II.11 and, especially, Problem 3 of Section II.11.3.

Often, we consider convex sets in a more general setting.

(1.4) Convex sets in vector spaces. We recall that a set V with the operations

“+” (addition): V ×V −→ V and “·” (scalar multiplication): R×V −→ V is called

a (real) vector space provided the following eight axioms are satisfied:

(1) u+ v = v + u for any two u, v ∈ V ;

(2) u+ (v + w) = (u+ v) + w for any three u, v, w ∈ V ;

(3) (αβ)v = α(βv) for any v ∈ V and any α, β ∈ R;

(4) 1v = v for any v ∈ V ;

(5) (α+ β)v = αv + βv for any v ∈ V and any α, β ∈ R;

(6) α(v + u) = αv + αu for any α ∈ R and any u, v ∈ V ;

(7) there exists a zero vector 0 ∈ V such that v + 0 = v for each v ∈ V and

(8) for each v ∈ V there exists a vector − v ∈ V such that v + (−v) = 0.

We often say “points” instead of “vectors”, especially when we have no par-

ticular reason to consider 0 (which we often denote just by 0) to be significantly

different from any other point (vector) in V .

A set A ⊂ V is called convex, provided for all x, y ∈ A the interval

[x, y] =
{
αx+ (1− α)y : 0 ≤ α ≤ 1

}

is contained in A. Again, we agree that the empty set is convex. A convex combi-
nation of a finite set of points in V and a convex hull conv(A) of a set A ⊂ V are

defined just as in the case of Euclidean space.

PROBLEM.

1◦. Let V be the space of all continuous real-valued functions f : [0, 1] −→ R.

Prove that the sets

B =
{
f ∈ V : |f(τ )| ≤ 1 for all τ ∈ [0, 1]

}
and

K =
{
f ∈ V : f(τ ) ≤ 0 for all τ ∈ [0, 1]

}

are convex.

(1.5) Operations with convex sets. Let V be a vector space and let A,B ⊂ V
be (convex) sets. The Minkowski sum A+B is a subset in V defined by

A+B =
{
x+ y : x ∈ A, y ∈ B

}
.
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6 I. Convex Sets at Large

In particular, if B = {b} is a point, the set

A+ b =
{
x+ b : x ∈ A

}

is a translation of A. For a number α and a subset X ⊂ V , the set

αX =
{
αx : x ∈ X

}

is called a scaling of X (for α > 0, the set αX is also called a dilation of X). Some

properties of convex sets are obvious, some are not so obvious, and some are quite

surprising.

PROBLEMS.

We will encounter some of the harder problems below later in the text.

1◦. Prove that the intersection
⋂

i∈I Ai of convex sets is convex.

2◦. Let A ⊂ V be a convex set and let T : V −→ W be a linear transformation.

Prove that the image T (A) is a convex set in W .

3. Let A ⊂ R
n be a polyhedron (see Problem 2, Section 1.3) and let T : Rn −→

R
m be a linear transformation. Prove that the image T (A) is a polyhedron in R

m.

Remark: We prove this in Section 9; see Theorem 9.2.

4. Prove that A+B is a convex set provided A and B are convex. Prove that

for a convex set A and non-negative numbers α and β one has (α+β)A = αA+βA.

Show that the identity does not hold if A is not convex or if α or β are allowed to

be negative.

5∗. For a set A ⊂ R
d, let [A] : Rd −→ R be the indicator function of A:

[A](x) =

{
1 if x ∈ A,

0 if x /∈ A.

Let A1, . . . , Ak be compact convex sets in R
n and let T : Rn −→ R

m be a linear

transformation. Let Bi = T (Ai) be the image of Ai. Suppose that
∑k

i=1 αi[Ai] = 0

for some numbers αi. Prove that
∑k

i=1 αi[Bi] = 0. Show that this is no longer true

if the Ai are not convex.

Remark: We prove this in Section 8; see Corollary 8.2.

6. Let A ⊂ R
d be a compact convex set and B = (−1/d)A. Prove that there

exists a vector b ∈ R
d such that b+B ⊂ A.

Remark: Figure 2 illustrates the statement for d = 2. We go back to this

problem in Section 5 when we discuss Helly’s Theorem (see Problem 1 of Section

5.2 and the hint thereafter).
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2. Carathéodory’s Theorem 7

A

B

A

B

Figure 2. Example: the polygon B = (−1/2)A can be translated

inside A.

2. Properties of the Convex Hull. Carathéodory’s

Theorem

Recall from (1.2) that the convex hull conv(S) of a set S is the set of all convex

combinations of points from S. Here is our first result.

(2.1) Theorem. Let V be a vector space and let S ⊂ V be a set. Then the convex
hull of S is a convex set and any convex set containing S also contains conv(S).
In other words, conv(S) is the smallest convex set containing S.

Proof. First, we prove that conv(S) is a convex set (cf. Problem 1, Section 1.3).

Indeed, let us choose two convex combinations u = α1u1 + . . . + αmum and v =

β1v1 + . . .+ βnvn of points from S. The interval [u, v] consists of the points γu+

(1− γ)v for 0 ≤ γ ≤ 1. Each such point γα1u1+ . . .+ γαmum+(1− γ)β1v1+ . . .+
(1− γ)βnvn is a convex combination of points u1, . . . , um, v1, . . . , vn from S since

m∑
i=1

γαi +

n∑
i=1

(1− γ)βi = γ

m∑
i=1

αi + (1− γ)

n∑
i=1

βi = γ + (1− γ) = 1.

Therefore, conv(S) is convex.

Now we prove that for any convex set A such that S ⊂ A, we have conv(S) ⊂ A.

Let us choose a convex combination

u = α1u1 + . . .+ αmum

of points u1, . . . , um from S. We must prove that u ∈ A. Without loss of generality,

we may assume that αi > 0 for i = 1, . . . ,m. We proceed by induction on m. If
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8 I. Convex Sets at Large

m = 1, then u = u1 and u ∈ A since S ⊂ A. Suppose that m > 1. Then αm < 1

and we may write

u = (1− αm)w + αmum, where w =
α1

1− αm
u1 + . . .+

αm−1

1− αm
um−1.

Now, w is a convex combination of u1, . . . , um−1 because

m−1∑
i=1

αi

1− αm
=

1

1− αm

m−1∑
i=1

αi =
1− αm

1− αm
= 1.

Therefore, by the induction hypothesis, we have w ∈ A. Since A is convex, [w, um] ⊂
A, so u ∈ A. �

PROBLEMS.

1◦. Prove that conv
(
conv(S)

)
= conv(S) for any S ⊂ V .

2◦. Prove that if A ⊂ B, then conv(A) ⊂ conv(B).

3◦. Prove that
(
conv(A) ∪ conv(B)

)
⊂ conv(A ∪B).

4. Let S ⊂ V be a set and let u, v ∈ V be points such that u /∈ conv(S) and

v /∈ conv(S). Prove that if u ∈ conv
(
S ∪ {v}

)
and v ∈ conv

(
S ∪ {u}

)
, then u = v.

5 (Gauss-Lucas Theorem). Let f(z) be a non-constant polynomial in one com-

plex variable z and let z1, . . . , zm be the roots of f (that is, the set of all solutions

to the equation f(z) = 0). Let us interpret a complex number z = x + iy as a

point (x, y) ∈ R
2. Prove that each root of the derivative f ′(z) lies in the convex

hull conv(z1, . . . , zm).

Hint: Without loss of generality we may suppose that f(z) = (z − z1) · · · (z −
zm). If w is a root of f ′(z), then

∑m
i=1

∏
j �=i(w − zj) = 0, and, therefore,∑m

i=1

∏
j �=i(w − zj) = 0, where z is the complex conjugate of z. Multiply both

sides of the last identity by (w− z1) · · · (w− zn) and express w as a convex combi-

nation of z1, . . . , zm.

Next, we introduce two important classes of convex sets.

(2.2) Definitions. The convex hull of a finite set of points in R
d is called a

polytope.

Let c1, . . . , cm be vectors from R
d and let β1, . . . , βm be numbers. The set

P =
{
x ∈ R

d : 〈ci, x〉 ≤ βi for i = 1, . . . ,m
}

is called a polyhedron (see Problem 2 of Section 1.3).
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2. Carathéodory’s Theorem 9

PROBLEMS.

1. Prove that the set

Δ =
{
(ξ1, . . . , ξd+1) ∈ R

d+1 : ξ1 + . . .+ ξd+1 = 1 and

ξi ≥ 0 for i = 1, . . . , d+ 1
}

is a polytope in R
d+1. This polytope is called the standard d-dimensional simplex.

2. Prove that the set

I =
{
(ξ1, . . . , ξd) ∈ R

d : 0 ≤ ξi ≤ 1 for i = 1, . . . , d
}

is a polytope. This polytope is called a d-dimensional cube.

3. Prove that the set

O =
{
(ξ1, . . . , ξd) ∈ R

d : |ξ1|+ . . .+ |ξd| ≤ 1
}

is a polytope. This polytope is called a (hyper)octahedron or crosspolytope.

simplex cube octahedron (crosspolytope)

Figure 3. Some 3-dimensional polytopes: simplex (tetrahedron), cube

and octahedron

4. Prove that the disc B =
{
(ξ1, ξ2) ∈ R

2 : ξ21 + ξ22 ≤ 1
}
is not a polytope.

5. Let V = C[0, 1] be the space of all real-valued continuous functions on the

interval [0, 1] and let A =
{
f ∈ V : 0 ≤ f(τ ) ≤ 1 for all τ ∈ [0, 1]

}
. Prove that A

is not a polytope.

The following two problems constitute the Weyl-Minkowski Theorem.

6∗. Prove that a polytope P ⊂ R
d is also a polyhedron.
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10 I. Convex Sets at Large

Remark: We prove this in Chapter II; see Corollary II.4.3.

7∗. Prove that a bounded polyhedron P ⊂ R
d is also a polytope.

Remark: We prove this in Chapter IV; see Corollary IV.1.3.

It seems intuitively obvious that in the space of a small dimension, to represent

a given point x from the convex hull of a set A as a convex combination, we would

need to use only a few points of A, although their choice will, of course, depend on

x. For example, in the plane, to represent x as a convex combination, we need to

use only three points; see Figure 4.

a

b

c

de

u

Figure 4. Example: to represent u as a convex combination of a, b, c,
d and e, we need only three points, for instance b, e and d.

The general fact is known as Carathéodory’s Theorem, which was proved by

C. Carathéodory around 1907.

(2.3) Carathéodory’s Theorem. Let S ⊂ R
d be a set. Then every point

x ∈ conv(S) can be represented as a convex combination of d + 1 points from
S:

x = α1y1 + . . .+ αd+1yd+1, where

d+1∑
i=1

αi = 1, αi ≥ 0

and yi ∈ S for i = 1, . . . , d+ 1.

Proof. Every point x ∈ conv(S) can be written as a convex combination

x = α1y1 + . . .+ αmym

of some points y1, . . . , ym ∈ S. We can assume that αi > 0 for all i = 1, . . . ,m. If

m < d+1, we can add terms 0y1, say, to get a convex combination with d+1 terms.

Suppose that m > d+ 1. Let us show that we can construct a convex combination
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2. Carathéodory’s Theorem 11

with fewer terms. Let us consider a system of linear homogeneous equations in m
real variables γ1, . . . , γm:

γ1y1 + . . .+ γmym = 0 and γ1 + . . .+ γm = 0.

The first vector equation reads as d real linear equations

γ1η1j + . . .+ γmηmj = 0 : j = 1, . . . , d

in the coordinates ηij of yi: yi = (ηi1, . . . , ηid). Altogether, we have d + 1 linear

homogeneous equations in m variables γ1, . . . , γm. Since m > d + 1, there must

be a non-trivial solution γ1, . . . , γm. Since γ1 + . . . + γm = 0, some γi are strictly

positive and some are strictly negative. Let

τ = min
{
αi/γi : γi > 0} = αi0/γi0 .

Let
∼
αi = αi − τγi for i = 1, . . . ,m. Then

∼
αi ≥ 0 for all i = 1, . . . ,m and αi0 = 0.

Furthermore,

∼
α1 + . . .+

∼
αm = (α1 + . . .+ αm)− τ (γ1 + . . .+ γm) = 1

and
∼
α1y1 + . . .+

∼
αmym = α1y1 + . . .+ αmym − τ (γ1y1 + . . .+ γmym) = x.

Therefore, we represented x as a convex combination

x =
∑
i�=i0

∼
αiyi

of m− 1 points y1, . . . , ŷi0 , . . . , ym (yi0 omitted).

So, if x is a convex combination of m > d + 1 points, it can be written as a

convex combination of fewer points. Iterating this procedure, we get x as a convex

combination of d+ 1 (or fewer) points from S. �

PROBLEMS.

1◦. Show by an example that the constant d + 1 in Carathéodory’s Theorem

cannot be improved to d.

2∗ (I. Bárány). Let S1, . . . , Sd+1 be subsets of Rd. Prove that if u ∈ conv(Si)

for each Si, then there exist points vi ∈ Si such that u ∈ conv
(
v1, . . . , vd+1

)
.

Hint: Choose points vi ∈ Si in such a way that the distance from u to

conv(v1, . . . , vd+1) is the smallest possible. Prove that if u /∈ conv
(
v1, . . . , vd+1

)
,

the distance could have been decreased further. This result is known as the “Col-

ored Carathéodory Theorem”; see [Bar82].

3∗. Let S ⊂ R
d be a set and let u be a point in the interior of conv(S). Prove

that one can choose 2d points v1, . . . , v2d ∈ S such that u lies in the interior of

conv
(
v1, . . . , v2d

)
.

4. Suppose that S ⊂ R
d is a set such that every two points in S can be

connected by a continuous path in S or a union of at most d such sets. Prove that

every point u ∈ conv(S) is a convex combination of some d points of S.

Here is a useful corollary relating convexity and topology.
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12 I. Convex Sets at Large

(2.4) Corollary. If S ⊂ R
d is a compact set, then conv(S) is a compact set.

Proof. Let Δ ⊂ R
d+1 be the standard d-dimensional simplex; see Problem 1 of

Section 2.2:

Δ =
{
(α1, . . . , αd+1) :

d+1∑
i=1

αi = 1 and αi ≥ 0 for i = 1, . . . , d+ 1
}
.

Then Δ is compact and so is the direct product

Sd+1×Δ =
{(

u1, . . . , ud+1;α1, . . . , αd+1

)
: ui ∈ S and (α1, . . . , αd+1) ∈ Δ

}
.

Let us consider the map Φ : Sd+1 ×Δ −→ R
d,

Φ(u1, . . . , ud+1;α1, . . . , αd+1) = α1u1 + . . .+ αd+1ud+1.

Theorem 2.3 implies that the image of Φ is conv(S). Since Φ is continuous, the

image of Φ is compact, which completes the proof. �

PROBLEMS.

1. Give an example of a closed set in R
2 whose convex hull is not closed.

2. Prove that the convex hull of an open set in R
d is open.

3. An Application: Positive Polynomials

In this section, we demonstrate a somewhat unexpected application of Cara-

théodory’s Theorem (Theorem 2.3). We will use Carathéodory’s Theorem in the

space of (homogeneous) polynomials.

Let us fix positive integers k and n and let H2k,n be the real vector space of

all homogeneous polynomials p(x) of degree 2k in n real variables x = (ξ1, . . . , ξn).
We choose a basis of H2k,n consisting of the monomials

ea = ξα1
1 · · · ξαn

n for a = (α1, . . . , αn) where α1 + . . .+ αn = 2k.

Hence dimH2k,n =
(
n+2k−1

2k

)
. At this point, we are not particularly concerned

with choosing the “correct” scalar product in H2k,n. Instead, we declare {ea} the

orthonormal basis of H2k,n, hence identifying H2k,n = R
d with d =

(
n+2k−1

2k

)
.

We can change variables in polynomials.

(3.1) Definition. Let U : Rn −→ R
n be an orthogonal transformation and let

p ∈ H2k,n be a polynomial. We define q = U(p) by

q(x) = p
(
U−1x
)

for x = (ξ1, . . . , ξn).

Clearly, q is a homogeneous polynomial of degree 2k in ξ1, . . . , ξn.
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3. An Application: Positive Polynomials 13

PROBLEMS.

1◦. Check that (U1U2)(p) = U1(U2(p)).

2◦. Let
p(x) = ‖x‖2k =

(
ξ21 + . . .+ ξ2n

)k
.

Prove that U(p) = p for any orthogonal transformation U .

It turns out that the polynomial of Problem 2, Section 3.1, up to a scalar

multiple, is the only polynomial that stays invariant under any orthogonal trans-

formation.

(3.2) Lemma. Let p ∈ H2k,n be a polynomial such that U(p) = p for every or-
thogonal transformation U . Then

p(x) = γ‖x‖2k = γ
(
ξ21 + . . .+ ξ2n

)k
for some γ ∈ R.

Proof. Let us choose a point y ∈ R
d such that ‖y‖ = 1 and let γ = p(y). Let us

consider

q(x) = p(x)− γ‖x‖2k.

Thus q is a homogeneous polynomial of degree 2k and q(Ux) = q(x) for any or-

thogonal transformation U and any vector x. Moreover, q(y) = 0. Since for every

vector x such that ‖x‖ = 1 there is an orthogonal transformation Ux such that

Uxy = x, we have q(x) = q
(
Uxy
)
= q(y) = 0 and hence q(x) = 0 for all x such that

‖x‖ = 1. Since q is a homogeneous polynomial, we have q(x) = 0 for all x ∈ R
n.

Therefore, p(x) = γ‖x‖2k as claimed. �

We are going to use Theorem 2.3 to deduce the existence of an interesting

identity.

(3.3) Proposition. Let k and n be positive integers. Then there exist vectors
c1, . . . , cm ∈ R

n such that

‖x‖2k =

m∑
i=1

〈ci, x〉2k for all x ∈ R
n.

In words: the k-th power of the sum of squares of n real variables is a sum of 2k-th
powers of linear forms in the variables.

Proof. We are going to apply Carathéodory’s Theorem in the space H2k,n.

Let

S
n−1 =

{
c ∈ R

n : ‖c‖ = 1
}

be the unit sphere in R
n. For a c ∈ S

n−1, let

pc(x) = 〈c, x〉2k where x = (ξ1, . . . , ξn).

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



14 I. Convex Sets at Large

Hence we have pc ∈ H2k,n. Let

K = conv
(
pc : c ∈ S

n−1
)

be the convex hull of all polynomials pc. Since the sphere S
n−1 is compact and the

map c �−→ pc is continuous, the set
{
pc : c ∈ S

n−1
}
is a compact subset of H2k,n.

Therefore, by Corollary 2.4, we conclude that K is compact.

Let us prove that γ‖x‖2k ∈ K for some γ > 0. The idea is to average the

polynomials pc over all possible vectors c ∈ S
n−1. To this end, let dc be the

rotation invariant probability measure on S
n−1 and let

(3.3.1) p(x) =

∫

Sn−1

pc(x) dc =

∫

Sn−1

〈c, x〉2k dc

be the average of all polynomials pc. We observe that p ∈ H2k,n. Moreover, since dc
is a rotation invariant measure, we have U(p) = p for any orthogonal transformation

U of Rn and hence by Lemma 3.2, we must have

p(x) = γ‖x‖2k for some γ ∈ R.

We observe that γ > 0. Indeed, for any x �= 0, we have pc(x) > 0 for all c ∈ S
n−1

except from a set of measure 0 and hence p(x) > 0.

The integral (3.3.1) can be approximated with arbitrary precision by a finite

Riemann sum:

p(x) ≈ 1

N

N∑
i=1

pci(x) for some ci ∈ S
n−1.

Therefore, p lies in the closure of K. Since K is closed, p ∈ K. By Theorem 2.3, we

can write p(x) = γ‖x‖2k as a convex combination of some
(
n+2k−1

2k

)
+1 polynomials

pci(x) = 〈ci, x〉2k. Dividing by γ, we complete the proof. �

It is not always easy to come up with a particular choice of ci in the identity

of Proposition 3.3.

PROBLEMS.

1. Prove Liouville’s identity:

(ξ21 + ξ22 + ξ23 + ξ24)
2 =

1

6

∑
1≤i<j≤4

(ξi + ξj)
4 +

1

6

∑
1≤i<j≤4

(ξi − ξj)
4.

2. Prove Fleck’s identity:

(ξ21+ξ22+ξ23+ξ24)
3 =

1

60

∑
1≤i<j<k≤4

(
ξi±ξj±ξk

)6
+

1

30

∑
1≤i<j≤4

(
ξi±ξj

)6
+
3

5

∑
1≤i≤4

ξ6i ,

where the sums containing ± signs are taken over all possible independent choices

of pluses and minuses.
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3. An Application: Positive Polynomials 15

3. Prove that one can choose m ≤
(
n+2k−1

2k

)
in Proposition 3.3.

Remark: In his solution of Waring’s problem, for all positive integers k and n,
D. Hilbert constructed integer vectors ci and rational numbers γi such that

‖x‖2k =

m∑
i=1

γi〈ci, x〉2k for all x ∈ R
n;

see, for example, Chapter 3 of [N96].

We apply Proposition 3.3 to study positive polynomials.

(3.4) Definition. Let p ∈ H2k,n be a polynomial. We say that p is positive
provided p(x) > 0 for all x �= 0. Equivalently, p ∈ H2k,n is positive provided

p(x) > 0 for all x ∈ S
n−1. Similarly, a polynomial p ∈ H2k,n is non-negative if

p(x) ≥ 0 for all x.

PROBLEM.

1◦. Prove that the set of all positive polynomials is a non-empty open convex

set in H2k,n and that the set of all non-negative polynomials is a non-empty closed

convex set in H2k,n.

We apply Proposition 3.3 to prove that a homogeneous polynomial is positive

if and only if it can be multiplied by a sufficiently high power of ‖x‖2 to produce a

sum of even powers of linear functions. The proof below is due to B. Reznick [R95]

and [R00].

(3.5) Proposition. Let p ∈ H2k,n be a positive polynomial. Then there exist a
positive integer s and vectors c1, . . . , cm ∈ R

n such that

‖x‖2s−2kp(x) =

m∑
i=1

〈ci, x〉2s for all x ∈ R
n.

Sketch of Proof. For a polynomial f ∈ H2k,n,

f(x) =
∑

a=(α1,... ,αn)

λaξ
α1
1 . . . ξαn

n ,

let us formally define the differential operator

f(∂) =
∑

a=(α1,... ,αn)

λa
∂α1

∂ξα1
1

· · · ∂αn

∂ξαn
n

.

Let us choose a positive integer s > 2k and the corresponding identity of Proposition

3.3:

(3.5.1) ‖x‖2s =
m∑
i=1

〈ci, x〉2s.

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



16 I. Convex Sets at Large

Let us see what happens if we apply f(∂) to both sides of the identity.

It is not very hard to see that

(3.5.2) f(∂)
(
〈c, x〉2s

)
=

(2s)!

(2s− 2k)!
f(c) · 〈c, x〉2s−2k.

It suffices to check the identity when f is a monomial and then it is straightforward.

One can also see that

(3.5.3) f(∂)
(
‖x‖2s
)
=

22ks!

(s− 2k)!
g(x) · ‖x‖2s−2k for some g ∈ H2k,n.

The correspondence f �−→ g defines a linear transformation

Φs : H2k,n −→ H2k,n

and the crucial observation is that Φs converges to the identity operator I as s
grows. Again, it suffices to check this when f is a monomial, in which case Φs(f) =
f + O(1/s) by the repeated application of the chain rule.

Since I−1 = I, for all sufficiently large s the operator Φs is invertible and Φ−1
s

converges to the identity operator I as s grows. Now we note that the set of positive

polynomials is open; see Problem 1 of Section 3.4. Therefore, for a sufficiently large

s the polynomial q = Φ−1
s (p) lies in a sufficiently small neighborhood of p = I(p)

and hence is positive. Applying q(∂) to both sides of (3.5.1), by (3.5.2) and (3.5.3)

we get

22ks!

(s− 2k)!
Φs(q) · ‖x‖2s−2k =

(2s)!

(2s− 2k)!

m∑
i=1

q(ci)〈ci, x〉2s−2k.

Now Φs(q) = p and q(ci) > 0 for i = 1, . . . ,m. Rescaling, we obtain a representa-

tion of p · ‖x‖2s−2k as a sum of powers of linear forms. �

PROBLEMS.

1◦. Check formulas (3.5.2) and (3.5.3).

2◦. Check that Φs indeed converges to the identity operator on H2k,n as s
grows.

3. For polynomials f, g ∈ H2k,n, let us define

〈f, g〉 = f(∂)g.

Note that since deg f = deg g, we get a number. Prove that 〈f, g〉 is a scalar product

in H2k,n and that

〈U(f), U(g)〉 = 〈f, g〉
for every orthogonal transformation of Rn.

4. Construct an example of a non-negative polynomial p ∈ H2k,n for which the

conclusion of Proposition 3.5 does not hold true.

5. Using Proposition 3.5, deduce Polya’s Theorem:
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4. Theorems of Radon and Helly 17

Let p be a real homogeneous polynomial of degree k in n real variables x =

(ξ1, . . . , ξn) and let

R
n
+ =
{
(ξ1, . . . , ξn) : ξi ≥ 0 for i = 1, . . . , n

}

be the non-negative orthant in R
n. Suppose that

p(x) > 0 for all x ∈ R
n
+ \ {0}.

Then there exists a positive integer s such that the coefficients
{
λa} of the polyno-

mial

(ξ1 + . . .+ ξn)
sp(ξ1, . . . , ξn) =

∑
a=(α1,... ,αn)

α1+...+αn=s+k

λaξ
α1
1 . . . ξαn

n

are non-negative.

We discuss the structure of the set of non-homogeneous non-negative univariate
polynomials in Chapter II; see Section II.11. The results there can be translated in a

more or less straightforward way to homogeneous non-negative bivariate polynomi-

als by applying the following “homogenization trick”: if p(t) is a non-homogeneous

polynomial of degree d, let q(x, y) = ydp(x/y). Some interesting metric properties

of the set of non-negative multivariate polynomials are discussed in exercises of

Chapter V; see Problems 8 and 9 of Section V.2.4.

4. Theorems of Radon and Helly

The following very useful result was first stated in 1921 by J. Radon as a lemma.

(4.1) Radon’s Theorem. Let S ⊂ R
d be a set containing at least d + 2 points.

Then there are two non-intersecting subsets R ⊂ S (“red points”) and B ⊂ S (“blue
points”) such that

conv(R) ∩ conv(B) �= ∅.

Proof. Let v1, . . . , vm, m ≥ d+2, be distinct points from S. Consider the following
system of d+ 1 homogeneous linear equations in variables γ1, . . . , γm:

γ1v1 + . . .+ γmvm = 0 and γ1 + . . .+ γm = 0.

Since m ≥ d+ 2, there is a non-trivial solution to this system. Let

R =
{
vi : γi > 0

}
and B =

{
vi : γi < 0

}
.

Then R ∩B = ∅.
Let β =

∑
i:γi>0

γi. Then β > 0 and
∑

i:γi<0

γi = −β, since γ’s sum up to zero.

Since γ1v1 + . . .+ γmvm = 0, we have

∑
i:γi>0

γivi =
∑

i:γi<0

(−γi)vi.
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18 I. Convex Sets at Large

Let

v =
∑

i:γi>0

γi
β
vi =

∑
i:γi<0

−γi
β

vi.

Hence v is a convex combination of points from R and a convex combination of

points from B. In other words, v ∈ conv(R) and v ∈ conv(B). �

a

b

c

d

a

b

c

d

Figure 5. Example: for any set of four points in the plane, either one

of the points lies within the convex hull of the other three, or the points

can be split into two pairs whose convex hulls intersect.

PROBLEMS.

1◦. Show by an example that the constant d + 2 in Radon’s Theorem cannot

be improved to d+ 1.

2∗ (Tverberg’s Theorem). Let k ≥ 2. Prove that for any set S of (k−1)(d+1)+1

or more points in R
d, one can find k pairwise non-intersecting subsets A1, . . . , Ak ⊂

S such that the intersection

conv(A1) ∩ conv(A2) ∩ . . . ∩ conv(Ak)

is not empty. Show that for some sets of (k − 1)(d + 1) points, such subsets

A1, . . . , Ak cannot be found.

Remark: See, for example, Chapter 8 of [Mat02].

The following result (one of the most famous results in convexity) was discov-

ered by E. Helly in 1913. The proof below is due to Radon (1921).

(4.2) Helly’s Theorem. Let A1, . . . , Am, m ≥ d+1, be a finite family of convex
sets in R

d. Suppose that every d+ 1 of the sets have a common point:

Ai1 ∩ . . . ∩Aid+1
�= ∅.

Then all the sets have a common point:

A1 ∩ . . . ∩Am �= ∅.
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4. Theorems of Radon and Helly 19

Proof. The proof is by induction on m (starting with m = d + 1). Suppose that

m > d + 1. Then, by the induction hypothesis, for every i = 1, . . . ,m there is

a point pi in the intersection A1 ∩ . . . ∩ Ai−1 ∩ Ai+1 ∩ . . . ∩ Am (Ai is missing).

Altogether, we have m > d + 1 points pi, each of which belongs to all the sets,

except perhaps Ai. If two of these points happened to coincide, we get a point

which belongs to all the Ai’s. Otherwise, by Radon’s Theorem (Theorem 4.1) there

are non-intersecting subsets R = {pi : i ∈ I} and B = {pj : j ∈ J} such that there

is a point

p ∈ conv(R) ∩ conv(B).

We claim that p is a common point of A1, . . . , Am. Indeed, all the points pi : i ∈ I
of R belong to the sets Ai : i /∈ I. All the points pj : j ∈ J of B belong to the sets

Aj : j /∈ J . Since the sets Ai are convex, every point from conv(R) belongs to the

sets Ai : i /∈ I. Similarly, every point from conv(B) belongs to the sets Aj : j /∈ J .
Therefore,

p ∈
⋂
i/∈I

Ai and p ∈
⋂
j /∈J

Aj .

Since I ∩ J = ∅, we have

p ∈
m⋂
i=1

Ai

and the proof follows. �

PROBLEMS.

1◦. Show that the theorem does not hold for non-convex sets Ai.

2◦. Construct an example of convex sets Ai in R
2, such that every two sets

have a common point, but there is no point which would belong to all the sets Ai.

3◦. Give an example of an infinite family {Ai : i = 1, 2, . . . } of convex sets in

R
d such that every d+1 sets have a common point but there are no points common

to all the sets Ai.

The theorem can be extended to infinite families of compact convex sets.

(4.3) Corollary. Let {Ai : i ∈ I}, |I| ≥ d + 1 be a (possibly infinite) family of
compact convex sets in R

d such that the intersection of any d+1 sets is not empty:

Ai1 ∩ . . . ∩Aid+1
�= ∅.

Then the intersection of all the sets Ai is not empty:

⋂
i∈I

Ai �= ∅.
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20 I. Convex Sets at Large

Proof. By Theorem 4.2, for any finite subfamily J ⊂ I the intersection
⋂

i∈J Ai is

not empty. Now we use the fact that if the intersection of a family of compact sets

is empty, then the intersection of the sets from some finite subfamily is empty. �

Helly’s Theorem has numerous generalizations, extensions, ramifications, etc.

To list all of them is impossible; here are just some.

PROBLEMS.

1. Let A1, . . . , Am be convex sets in R
d and let k ≤ d + 1. Prove that if

every k of the sets have a common point, then for every (d − k + 1)-dimensional

subspace L in R
d there exists a translate L+ u : u ∈ R

d which intersects every set

Ai : i = 1, . . . ,m.

2. Let A1, . . . , Am and C be convex sets in R
d. Suppose that for any d + 1

sets Ai1 , . . . , Aid+1
there is a translate C + u : u ∈ R

d of C which intersects all

Ai1 , . . . , Aid+1
. Prove that there is a translate C + u of C which intersects all sets

A1, . . . , Am.

3. In Problem 2, replace intersects by contains.

4. In Problem 2, replace intersects by is contained in.

5∗ (Fractional Helly’s Theorem). Prove that for any 0 < α < 1 and any d there

exists a β = β(d, α) > 0 with the following property:

Suppose that A1, . . . , Am,m ≥ d+1, are convex sets in R
d. Let f be the number

of (d + 1)-subfamilies Ai1 , . . . , Aid+1
that have a common point. If f ≥ α

(
m

d+1

)
,

then at least some βm sets Ai have a common point.

Prove that one can choose β = 1− (1− α)1/(d+1).

Remark: The bound β = 1 − (1 − α)1/(d+1) is best possible. A weaker bound

β ≥ α/(d+ 1) is much easier to prove; see Chapter 8 of [Mat02].

6∗ (“Piercing” Theorem). Prove that for every triple (p, q, d) such that p ≥
q ≥ d+ 1 there exists a positive integer c(p, q, d) such that if A1, . . . , Am ⊂ R

d are

convex sets, m ≥ p and out of every p sets Ai1 , . . . , Aip some q sets have a common

point, then some set X of c(p, q, d) points in R
d intersects every set Ai.

Remark: This is a conjecture of H. Hadwiger and M. Debrunner, proved by N.

Alon and D. Kleitman; see [We97] and references therein.

7∗ (Measure of the intersection). Prove that for every d there exists a constant

γ = γ(d) > 0 with the following property:

Let A1, . . . , Am ⊂ R
d be convex sets. Suppose that m ≥ 2d and that the

intersection of every 2d sets Ai1 , . . . , Ai2d has volume at least 1. Prove that the

intersection A1 ∩ . . . ∩Am has volume at least γ.

Prove that one can choose γ(d) = d−2d2

(it is conjectured that the constant

d−2d2

can be improved to d−αd for some absolute constant α > 0).

Remark: This is a result of I. Bárány, M. Katchalski and J. Pach; see [E93]

and references therein.
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5. Applications of Helly’s Theorem in Combinatorial Geometry 21

8∗ (Colored Helly’s Theorem). Let A1, . . . ,Ad+1 be non-empty finite families

of convex sets in R
d. Suppose that for each choice Ai ∈ Ai, i = 1, . . . , d + 1, we

have A1 ∩ . . . ∩Ad+1 �= ∅. Prove that for some i the intersection of the sets in the

family Ai is non-empty.

Hint: This can be deduced from Problem 2 of Section 2.3; see also [Bar82] and

Chapter 8 of [Mat02].

5. Applications of Helly’s Theorem in Combinatorial

Geometry

In the next two sections, we discuss various applications and appearances of Helly’s

Theorem. The proofs are almost immediate once we recognize the relationship

of the problem to Helly’s Theorem but may be quite non-trivial if we miss that

connection.

(5.1) Separating points by a hyperplane. Suppose that there is a finite set R
of red points in R

d and a finite set B of blue points in R
d. A hyperplane H ⊂ R

d is

the set described by a linear equation H =
{
x ∈ R

d : 〈c, x〉 = α
}
, where c �= 0 is

a non-zero vector and α is a number. We say that the hyperplane H ⊂ R
d strictly

separates red and blue points if 〈c, x〉 < α for all x ∈ R and 〈c, x〉 > α for all x ∈ B.

The following result, called Kirchberger’s Theorem, was proved by P. Kirchberger

in 1903, that is, before Helly’s Theorem.

Proposition. Suppose that for any set S ⊂ R
d of d+2 or fewer points there exists

a hyperplane which strictly separates the sets S ∩ R and S ∩ B of red, resp. blue,
points in S. Then there exists a hyperplane which strictly separates the sets R and
B.

Proof. A hyperplane H =
{
x ∈ R

d : 〈c, x〉 = α
}
, where c = (γ1, . . . , γd) ∈ R

d,

can be encoded by a point (c, α) = (γ1, . . . , γd, α) ∈ R
d+1. For every point r ∈ R

we define a set Ar ⊂ R
d+1:

Ar =
{
(c, α) ∈ R

d+1 : 〈c, r〉 < α
}

and for every point b ∈ B we define a set Ab ⊂ R
d+1:

Ab =
{
(c, α) ∈ R

d+1 : 〈c, b〉 > α
}
.

It is clear that Ab and Ar are convex sets in R
d+1. Therefore, by Helly’s Theorem

the intersection (⋂
r∈R

Ar

)
∩
(⋂
b∈B

Ab

)

is non-empty, provided for any subset S ⊂ R ∪ B of at most d + 2 points the

intersection ( ⋂
r∈S∩R

Ar

)
∩
( ⋂
b∈S∩B

Ab

)
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22 I. Convex Sets at Large

is non-empty. Since the sets Ar and Ab are open, their intersection is an open set;

therefore an intersection of sets Ar and Ab is non-empty if and only if it contains

a point (c, α) with c �= 0. Hence for any subset S ⊂ R ∪B, the intersection

( ⋂
r∈S∩R

Ar

)
∩
( ⋂
b∈S∩B

Ab

)

is not empty if and only if there is a point (c, α) ∈ R
d+1 such that the hyperplane

H =
{
x ∈ R

d : 〈c, x〉 = α
}

strictly separates the sets B ∩ S and R ∩ S. This completes the proof. �

For example, if two sets of points in the plain cannot be separated by a straight

line, one of the three configurations of Figure 6 must occur.

1 ) 2 ) 3 )

Figure 6. The three reasons points cannot be separated in the plane

PROBLEMS.

1. Prove that if a convex set is contained in the union of a finite family of

halfspaces in R
d (sometimes we say covered by a finite family of halfspaces; see

Section 5.2), then it is contained in the union of some d + 1 (or fewer) halfspaces

from the family (covered by some d+ 1 subspaces).

2. Let I1, . . . , Im be parallel line segments in R
2, such that for every three

Ii1 , Ii2 , Ii3 there is a straight line that intersects all three. Prove that there is a

straight line that intersects all the segments I1, . . . , Im.

3. Let Ai : i = 1, . . . ,m be convex sets in R
2 such that for every two sets Ai

and Aj there is a line parallel to the x-axis which intersects them both. Prove that

there is a line parallel to the x-axis which intersects all the sets Ai.

(5.2) The center point. Let us fix a Borel probability measure μ on R
d. This

means, roughly speaking, that for any “reasonable” subset A ⊂ R
d a non-negative

number μ(A) is assigned which satisfies some additivity and continuity properties

and such that μ(Rd) = 1. We are not interested in rigorous definitions here; the

following two examples are already of interest:
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5. Applications of Helly’s Theorem in Combinatorial Geometry 23

Counting measure. Suppose that there is a finite set X ⊂ R
d of |X| = n points

and μ(A) = |A ∩X|/n is the proportion of the points in X contained in A.

Integrable density. Suppose that there is an integrable function f : Rd −→ R

such that f(x) ≥ 0 for all x ∈ R
d and such that

∫

Rd

f(x) dx = 1, where dx is the

Lebesgue measure. Let μ(A) =

∫

A

f(x) dx for all (Borel) measurable sets A.

With a hyperplane H =
{
x : 〈c, x〉 = α

}
we associate two open halfspaces

H+ =
{
x ∈ R

d : 〈c, x〉 > α
}

and H− =
{
x ∈ R

d : 〈c, x〉 < α
}

and two closed halfspaces

H+ =
{
x ∈ R

d : 〈c, x〉 ≥ α
}

and H− =
{
x ∈ R

d : 〈c, x〉 ≤ α
}
.

Proposition. Let μ be a Borel probability measure on R
d. Then there exists a point

y ∈ R
d, called a center point, such that for any closed halfspace H� containing y

one has

μ(H�) ≥
1

d+ 1
.

Proof. For a closed halfspace G ⊂ R
d, let

∼
G = R

d \G be the complementary open

halfspace. Let S be the set of all closed halfspaces G such that μ
(∼
G
)
< 1/(d+ 1).

We observe that for any d+ 1 halfspaces G1, . . . , Gd+1 from S one has

μ
(∼
G1 ∪ . . . ∪

∼
Gd+1

)
<

(d+ 1)

(d+ 1)
= 1 and hence

∼
G1 ∪ . . . ∪

∼
Gd+1 �= R

d,

which implies that G1 ∩ . . . ∩ Gd+1 �= ∅. Helly’s Theorem implies that any finite

family {Gi} of halfspaces from S has a non-empty intersection. Let us choose a

finite number of halfspaces G1, . . . , Gm ⊂ R
d such that the intersection B = G1 ∩

. . .∩Gm is bounded and hence compact. Enlarging the halfspaces by translations,

if necessary, we can ensure that G1, . . . , Gm are from S. Thus {B∩G : G ∈ S} is a

family of compact sets such that every finite subfamily has a non-empty intersection.

Hence there is a point y which belongs to all halfspaces G ∈ S. If H� is an open

halfspace containing y, then the complementary closed halfspace does not contain y
and hence does not belong to S. Then we must have μ(H�) ≥ 1/(d+1). Since μ is

σ-additive and a closed halfspace can be represented as an intersection of countably

many nested open halfspaces, the result follows. �

The above result was first obtained in 1916 by J. Radon. The above proof

belongs to I.M. Yaglom and V.G. Boltyanskii (1956).
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24 I. Convex Sets at Large

PROBLEMS.

1. Let S ⊂ R
d be a compact convex set. Prove that there is a point u ∈ R

d

such that (−1/d)S + u ⊂ S.

Hint: For every point x ∈ S consider the set Ax =
{
u : (−1/d)x + u ∈ S

}
.

Use Helly’s Theorem.

2∗ (“Ham Sandwich Theorem”). Let μ1, . . . , μd be a set of Borel probability

measures on R
d. Prove that there exists a hyperplane H ⊂ R

d such that μi(H+) ≥
1/2 and μi(H−) ≥ 1/2 for all i = 1, . . . , d.

3∗ (Center Transversal Theorem). Let μ1, . . . , μk, k ≤ d, be Borel probability

measures on R
d. Prove that there exists a (k − 1)-dimensional affine subspace

L ⊂ R
d such that for every closed halfspace H� containing L we have μi

(
H�

)
≥

1/(d− k + 2).

Remark: For Problems 2 and 3, see [Ž97] and references therein.

4◦. Prove that the theorem of Problem 3 implies both the result of Problem 2

above and the proposition of this section.

A couple of geometric problems.

5∗ (Krasnoselsky’s Theorem). Let X ⊂ R
d be a set and let a, b ∈ X be points.

We say that b is visible from a if [a, b] ⊂ X. Suppose that X ⊂ R
d is an infinite

compact set such that for any d+1 points of X there is a point from which all d+1

are visible. Prove that there is a point from which all points of X are visible.

6 (Jung’s Theorem). For a compact set X ⊂ R
d, let us call maxy,z∈X ‖y − z‖

the diameter of X. Prove that any compact set of diameter 2 is contained in a ball

of radius
√

2d/(d+ 1).

For Problems 5 and 6, see [DG63].

6. An Application to Approximation

We proceed to apply Helly’s Theorem to an important problem of constructing the

best approximation of a given function by a function from the required class. We

will go back to this problem again in Section IV.13.

(6.1) Uniform approximations.

Let us fix some real-valued functions fi : T −→ R, i = i, . . . ,m, on some set

T . Given a function g : T −→ R and a number ε ≥ 0, we want to construct a linear

combination

fx(τ ) =
m∑
i=1

ξifi(τ ), x = (ξ1, . . . , ξm)

such that

|g(τ )− fx(τ )| ≤ ε for all τ ∈ T.

This is the problem of the uniform or Chebyshev approximation. Helly’s Theorem

implies that a uniform approximation exists if it exists on every reasonably small

subset of T .
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(6.2) Proposition. Suppose that T is a finite set. Let us fix an ε ≥ 0. Suppose
that for any m+ 1 points τ1, . . . , τm+1 from T one can construct a function fx(τ )
(with x = (ξ1, . . . , ξm) depending on τ1, . . . , τm+1) such that

|g(τ )− fx(τ )| ≤ ε for τ = τ1, . . . , τm+1.

Then there exists a function fx(τ ) such that

|g(τ )− fx(τ )| ≤ ε for all τ ∈ T.

Proof. For a τ ∈ T let us define a set A(τ ) ⊂ R
m:

A(τ ) =
{
(ξ1, . . . , ξm) :

∣∣g(τ )− fx(τ )
∣∣ ≤ ε
}
.

In other words, A(τ ) is the set of functions fx that approximate g within ε at the

point τ . Now A(τ ) are convex sets (see Problem 1 below), and

A(τ1) ∩ . . . ∩A(τm+1) �= ∅

for all possible choices of m+ 1 points τ1, . . . , τm+1 in T . Since T is finite, Helly’s

Theorem (Theorem 4.2) implies that the intersection of all sets A(τ ) : τ ∈ T is

non-empty. It follows then that for a point

x ∈
⋂
τ∈T

A(τ )

we have |g(τ )− fx(τ )| ≤ ε for all τ ∈ T . �

PROBLEMS.

1◦. Let A(τ ) be as in the proof of Proposition 6.2. Prove that A(τ ) ⊂ R
m+1 is

a closed convex set.

2◦. Show that for m ≥ 2 the set A(τ ) is not compact.

To prove a version of Proposition 6.2 for infinite sets T , we must assume some

regularity of functions f1, . . . , fm.

(6.3) Proposition. Suppose there is a finite set of points σ1, . . . , σn in T such
that whenever fx = ξ1f1 + . . . + ξmfm and fx(σ1) = . . . = fx(σn) = 0, then ξ1 =

. . . = ξm = 0. Suppose further that for any set of m + 1 points τ1, . . . , τm+1 in T
one can construct a function fx (with x = (ξ1, . . . , ξm) depending on τ1, . . . , τm+1)
such that

|g(τ )− fx(τ )| ≤ ε for τ = τ1, . . . , τm+1.

Then there exists a function fx(τ ) such that

|g(τ )− fx(τ )| ≤ ε for all τ ∈ T.
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Proof. Let A(τ ) : τ ∈ T be the sets defined in the proof of Proposition 6.2. Let

A = A(σ1) ∩ . . . ∩A(σn).

First, we prove that A is compact. Indeed, by Problem 1, Section 6.2, the set A is

closed. It remains to show that A is bounded. Let us define a function

N : Rm −→ R, N(x) = max
{
|fx(σi)| : i = 1, . . . , n

}
.

Then N(λx) = |λ|N(x) for λ ∈ R, N(x) > 0 for x �= 0 and N is continuous (in

fact, N is a norm in R
m). Therefore,

min
{
N(x) : ‖x‖ = 1

}
= δ > 0

and N(x) > δ‖x‖.
Now, if |g(σi) − fx(σi)| ≤ ε for i = 1, . . . , n, we have |fx(σi)| ≤ |g(σi)| + ε for

i = 1, . . . , n. Letting

R = ε+max
{
|g(σi)| : i = 1, . . . , n

}
,

we conclude that N(x) ≤ R, and, therefore, ‖x‖ ≤ R/δ for any x ∈ A. Thus A is

compact.

For τ ∈ T let A(τ ) = A(τ )∩A. Then each setA(τ ) is compact. Applying Helly’s

Theorem as in the proof of Proposition 6.2, we conclude that every intersection of

a finite family of sets A(τ ) is non-empty. Therefore, every intersection A(τ1) ∩
. . .∩A(τm+1) is a non-empty compact convex set. Therefore, By Corollary 4.3, the

intersection of all the sets A(τ ) is non-empty and so is the intersection of all the

sets A(τ ). A point

x = (ξ1, . . . , ξm) ∈
⋂
τ∈T

A(τ )

gives rise to a function

fx = ξ1f1 + . . .+ ξmfm,

which approximates g uniformly within the error ε. �

PROBLEMS.

In the problems below, T = [0, 1] and fi(τ ) = τ i, i = 0, . . . ,m (note that we

start with f0).

1◦. Prove that for any m + 1 distinct points τ1, τ2, . . . , τm+1 from [0, 1] the
intersection A(τ1) ∩ . . . ∩A(τm+1) is compact.

2◦. Let g(τ ) = eτ for τ ∈ [0, 1]. Let us choose ε = 0. Check that each

intersection A(τ1)∩. . .∩A(τm+1) is not empty for any choice of τ1, . . . , τm+1 ∈ [0, 1],

but
⋂

τ∈[0,1]

Aτ = ∅. In other words, for every m + 1 points τ1, . . . , τm+1 there is a
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polynomial p(τ ) = ξ0 + ξ1τ + . . .+ ξmτm such that p(τ ) = eτ for τ = τ1, . . . , τm+1

but there is no polynomial p(τ ) such that eτ = p(τ ) for all τ ∈ [0, 1].

3∗. Let g : [0, 1] −→ R be any function. Prove that for any m + 2 points

0 ≤ τ1 < τ2 < . . . < τm+2 ≤ 1 there is a unique polynomial p(τ ) = ξ0 + ξ1τ + . . .+
ξmτm, such that

|g(τ1)− p(τ1)| = |g(τ2)− p(τ2)| = . . . = |g(τm+2)− p(τm+2)|

and the signs of the differences

g(τ1)− p(τ1), g(τ2)− p(τ2), . . . , g(τm+2)− p(τm+2)

alternate. Prove that the polynomial p gives the unique best (that is, with the

smallest ε) uniform approximation to g on the set of m + 2 points τ1, . . . , τm+2.

The error ε of this approximation can be found to be ε = |η|, where ξ0, . . . , ξm and

η is the (necessarily unique) solution to the system of m+ 2 linear equations

g(τ1)− p(τ1) = η, g(τ2)− p(τ2) = −η, . . . , g(τm+2)− p(τm+2) = (−1)m+1η

in m+ 2 variables (ξ0, . . . , ξm, η).

����
1

2 3

�

�

�

Figure 7. A linear function p(τ) = ξ0 + ξ1τ which provides the best

uniform approximation for g at some three points τ1, τ2 and τ2 and

satisfies p(τ1)− g(τ1) = −
�
p(τ2)− g(τ2)

�
= p(τ3)− g(τ3)
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7. The Euler Characteristic

Helly’s Theorem tells us something special about how convex sets may intersect.

Here we introduce another powerful tool to study intersection properties of convex

sets.

(7.1) Definition. Let A ⊂ R
d be a subset. The indicator function [A] of A is the

function [A] : Rd −→ R such that

[A](x) =

{
1 if x ∈ A,

0 if x /∈ A.

PROBLEM.

1◦. Prove that [A] · [B] = [A ∩B].

(7.2) Lemma (Inclusion-Exclusion Formula). Let A1, . . . , Am ⊂ R
d be sets.

Then

[A1 ∪ . . . ∪Am] = 1− (1− [A1]) · (1− [A2]) · · · (1− [Am])

=

m∑
k=1

(−1)k−1
∑

1≤i1<i2<...<ik≤m

[Ai1 ∩ . . . ∩Aik ].

In particular,
[A1 ∪A2] = [A1] + [A2]− [A1 ∩A2].

Proof. Let us choose an x ∈ R
d. Then

[A1 ∪ . . . ∪Am](x) =

{
1 if x ∈ A1 ∪ . . . ∪Am,

0 if x /∈ A1 ∪ . . . ∪Am.

On the other hand,

1− [Ai](x) =

{
1 if x /∈ Ai,

0 if x ∈ Ai.

Therefore,

(
1− [A1](x)

)
· · ·
(
1− [Am](x)

)
=

{
1 if x /∈ Ai for all i,

0 if x ∈ Ai for some i.

Hence [A1 ∪ . . . ∪ Am] = 1 − (1 − [A1]) · (1 − [A2]) · · · (1 − [Am]). Expanding the

product, we complete the proof. �

PROBLEM.

1◦. Researchers at a research institute speak French, Russian, and English.

Among them, 20 people speak French, 15 speak Russian, and 10 speak English.

Also, 8 people speak French and Russian, 5 people speak Russian and English and

7 speak French and English. Two people speak French, Russian and English. How

many people work at the institute?

We are going to develop a technique which can be viewed as a combinatorial

calculus of convex sets. First, we define the class of functions we will be dealing

with.
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(7.3) Definitions. The real vector space spanned by the functions [A], where

A ⊂ R
d is a compact convex set, is called the algebra of compact convex sets and is

denoted K(Rd). Thus a function f ∈ K(Rd) is a linear combination

f =

m∑
i=1

αi[Ai],

where the [Ai] ⊂ R
d are compact convex sets and αi ∈ R are real numbers.

The real vector space spanned by the functions [A], where A ⊂ R
d is a closed

convex set, is called the algebra of closed convex sets and is denoted C(Rd). Thus a

typical function f ∈ C(Rd) is a linear combination

f =

m∑
i=1

αi[Ai],

where [Ai] ⊂ R
d are closed convex sets and αi ∈ R are real numbers.

We use the term “algebra” since the spaces K(Rd) and C(Rd) are closed under

multiplication of functions; see Problem 1 below.

A linear functional ν : K(Rd) −→ R, resp. ν : C(Rd) −→ R, is called a valuation.
Thus ν(αf + βg) = αν(f) + βν(g) for any real α and β and any f, g ∈ K(Rd),

resp. f, g ∈ C(Rd). More generally, we call a valuation any linear transformation

K(Rd), C(Rd) −→ V , where V is a real vector space.

Valuations will emerge as analogues of “integrals” and “integral transforms” in

our combinatorial calculus; see Sections 8 and IV.1 for some examples.

PROBLEMS.

1◦. Prove that the product fg of functions f, g ∈ K(Rd) is a function in K(Rd)

and that the product fg of functions f, g ∈ C(Rd) is a function in C(Rd).

2◦. Do the functions [A], where A ⊂ R
d is a non-empty compact convex set,

form a basis of K(Rd)?

Now we prove the main result of this section.

(7.4) Theorem. There exists a unique valuation χ : C(Rd) −→ R, called the Euler
characteristic, such that χ([A]) = 1 for every non-empty closed convex set A ⊂ R

d.

Proof. To show that χ must be unique, if it exists, is easy: let

f =

m∑
i=1

αi[Ai].

Then we must have

χ(f) =
∑

i:Ai �=∅
αi.
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Let us prove that χ exists. First, we define χ on functions f ∈ K(Rd).

We use induction on d. Suppose that d = 0. Then any function f ∈ K(Rd) has

the form f = α[0] for some α ∈ R and we let χ(f) = α.

Suppose that d > 0.

For a point x = (ξ1, . . . , ξd), let �(x) = ξd be the last coordinate of x. For a

τ ∈ R let us consider the hyperplane

Hτ =
{
x ∈ R

d : �(x) = τ
}
.

The hyperplane Hτ can be identified with R
d−1 and hence, by the induction hy-

pothesis, there exists a valuation, say χτ : K(Hτ ) −→ R, which satisfies the required

properties. For a function f ∈ K(Rd), let fτ be the restriction of f onto Hτ . Thus

if f =

m∑
i=1

αi[Ai], then fτ =

m∑
i=1

αi[Ai ∩Hτ ]

and so fτ ∈ K(Hτ ) and we can define χτ (fτ ). Since Ai ∩Hτ are compact convex

(possibly empty) sets, we must have

χτ (fτ ) =
∑

i:Ai∩Hτ �=∅
αi.

Let us consider the limit

lim
ε−→+0

χτ−ε(fτ−ε).

It may happen that the limit is equal to χτ (fτ ). This happens, for example, if for

every i and small ε > 0, we have Ai ∩Hτ �= ∅ =⇒ Ai ∩Hτ−ε �= ∅ (see Figure 8).

A

a

a

b

b

-

-

�

�

Figure 8. Example: for the function f = [A], we have

limε−→+0 χa−ε(fa−ε) = χa(fa) = 1 but 0 = limε−→+0 χb−ε(fb−ε) �=
χb(fb) = 1.
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In general, we conclude that limε−→+0 χτ−ε(fτ−ε) is the sum of αi such that

Ai ∩Hτ−ε �= ∅ for all sufficiently small ε > 0. It follows then that

χτ (fτ )− lim
ε−→+0

χτ−ε(fτ−ε) =
∑
i∈I

αi, where I =
{
i : min

x∈Ai

�(x) = τ
}
.

In particular, limε−→+0 χτ−ε(fτ−ε) = χτ (fτ ) unless τ is the minimum value of the

linear function �(x) on some set Ai.

Therefore, for a given function f ∈ K(Rd) there are only finitely many τ ’s,
where limε−→+0 χτ−ε(fτ−ε) �= χτ (fτ ). Now we define

χ(f) =
∑
τ∈R

(
χτ (fτ )− lim

ε−→+0
χτ−ε(fτ−ε)

)
.

As we noted, the sum contains only finitely many non-zero summands, so it is well

defined.

If f, g ∈ K(Rd) are functions and α, β ∈ R are numbers, then for every τ ∈ R

we have (αf + βg)τ = αfτ + βgτ . Since by the induction hypothesis χτ is a

valuation and taking the limit is a linear operation, we conclude that χ(αf +βg) =
αχ(f) + βχ(g), so χ is a valuation. Furthermore, if A ⊂ R

d is a compact convex

set, then

χτ ([A]τ )− lim
ε−→+0

χτ−ε([A]τ−ε) =

{
1 if minx∈A �(x) = τ,

0 otherwise.

Since A is a non-empty compact convex set, there is unique minimum value of the

linear function �(x) on A. Therefore, χ([A]) = 1.

Now we are ready to extend χ onto C(Rd). Let B(ρ) =
{
x ∈ R

d : ‖x‖ ≤ ρ
}
be

the ball of radius ρ. For f ∈ C(Rd) we define

χ(f) = lim
ρ−→+∞

f · [B(ρ)].

Clearly, χ satisfies the required properties. �

Theorem 7.4 and its proof belongs to H. Hadwiger.

If A ⊂ R
d is a set such that [A] ∈ C(Rd), we often write χ(A) instead of χ([A])

and call it the Euler characteristic of the set A. In the course of the proof of

Theorem 7.4, we established the following useful fact, which will play the central

role in our approach to the Euler-Poincaré Formula of Section VI.3.

(7.5) Lemma. Let A ⊂ R
d be a set such that [A] ∈ K(Rd). For τ ∈ R let Hτ

be the hyperplane consisting of the points x = (ξ1, . . . , ξd) with ξd = τ . Then
[A ∩Hτ ] ∈ K(Rd) and

χ(A) =
∑
τ∈R

(
χ(A ∩Hτ )− lim

ε−→+0
χ(A ∩Hτ−ε)

)
.

�
Another useful result allows us to express the Euler characteristic of a union of

sets in terms of the Euler characteristics of the intersections of the sets.
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(7.6) Corollary. Let A1, . . . , Am ⊂ R
d be sets such that [Ai] ∈ K(Rd) for all

i = 1, . . . ,m. Then [A1 ∪ . . . ∪Am] ∈ K(Rd) and

χ(A1 ∪ . . . ∪Am) =

m∑
k=1

(−1)k−1
∑

1≤i1<i2<...<ik≤m

χ(Ai1 ∩ . . . ∩Aik).

In particular,
χ(A1 ∪A2) = χ(A1) + χ(A2)− χ(A1 ∩A2).

Proof. Follows by Lemma 7.2 and Theorem 7.4. �

PROBLEMS.

1. Let A1, A2, A3 ⊂ R
d be closed convex sets such that A1∩A2 �= ∅, A1∩A3 �= ∅,

A2 ∩A3 �= ∅ and A1 ∪A2 ∪A3 is a convex set. Prove that A1 ∩A2 ∩A3 �= ∅.
2. Let A1, . . . , Am ⊂ R

d be closed convex sets such that A1 ∪ . . . ∪ Am is a

convex set. Suppose that the intersection of every k sets Ai1 , . . . , Aik is non-empty.

Prove that there are k + 1 sets Ai1 , . . . , Aik+1
whose intersection is non-empty.

3. Let

Δ =
{
(ξ1, . . . , ξd) : ξ1 + . . .+ ξd = 1, ξi ≥ 0 for i = 1, . . . , d

}

be the standard simplex in R
d. Let Δi =

{
x ∈ Δ : ξi = 0

}
be the i-th facet

of Δ. Suppose that there are compact convex sets K1, . . . ,Kd ⊂ R
d, such that

Δ ⊂ K1 ∪ . . .∪Kd and Ki ∩Δi = ∅ for i = 1, . . . , d. Prove that K1 ∩ . . .∩Kd �= ∅.
Hint: Use induction on d and Problem 2.

4. Let A1, . . . , Am ⊂ R
d be closed convex sets such that A1 ∩ . . . ∩ Am �= ∅.

Prove that χ(A1 ∪ . . . ∪Am) = 1.

5. Find the Euler characteristic of the “open square”

I2 =
{
(ξ1, ξ2) : 0 < ξ1, ξ2 < 1

}

and the “open cube”

I3 =
{
(ξ1, ξ2, ξ3) : 0 < ξ1, ξ2, ξ3 < 1

}
.

6. Let A1, A2, A3, A4 ⊂ R
d be closed convex sets such that the union A1∪A2∪

A3 ∪ A4 is convex and all pairwise intersections A1 ∩ A2, A1 ∩ A3, A1 ∩ A4, A2 ∩
A3, A2 ∩ A4 and A3 ∩ A4 are non-empty. Prove that at least three of the four

intersections A1 ∩A2 ∩A3, A1 ∩A2 ∩A4, A1 ∩A3 ∩A4 and A2 ∩A3 ∩A4 are non-

empty and that if all the four intersections are non-empty, then the intersection

A1 ∩A2 ∩A3 ∩A4 is non-empty. Construct an example where exactly three of the

four intersections A1 ∩A2 ∩ A3, A1 ∩A2 ∩A4, A1 ∩A3 ∩A4 and A2 ∩A3 ∩A4 are

non-empty.
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8. Application: Convex Sets and Linear Transformations

As an application of the Euler characteristic, we demonstrate an interesting behav-

ior of collections of compact convex sets under linear transformations.

(8.1) Theorem. Let T : Rn −→ R
m be a linear transformation. Then there exists

a linear transformation T : K(Rn) −→ K(Rm) such that T ([A]) = [T (A)] for any
compact convex set A ⊂ R

n.

Proof. Clearly, if A ⊂ R
n is a compact convex set, then T (A) ⊂ R

m is also a

compact convex set. Let us define a function G : Rn × R
m −→ R, where

G(x, y) =

{
1 if T (x) = y,

0 if T (x) �= y.

Let f ∈ K(Rn) be a function. We claim that for every y ∈ R
m the function

gy(x) = G(x, y)f(x) belongs to the space K(Rn). Indeed, if

(8.1.1) f =

k∑
i=1

αi[Ai],

where αi ∈ R and Ai ⊂ R
n are compact convex sets, then

(8.1.2) gy =

k∑
i=1

αi[Ai ∩ T−1(y)],

where T−1(y) is the affine subspace that is the inverse image of y. Hence χ(gy) is
well defined and we define h = T (f) by the formula h(y) = χ(gy). We claim that

h ∈ K(Rm). Indeed, for f as in (8.1.1), the function gy is given by (8.1.2) and

h(y) =
∑
i∈I

αi, where I =
{
i : Ai ∩ T−1(y) �= ∅

}
.

However, Ai ∩ T−1(y) �= ∅ if and only if y ∈ T (Ai), so

(8.1.3) h =
∑
i∈I

αi[T (Ai)].

Therefore, h = T (f) ∈ K(Rm) and the transformation T is well defined. We see

that T is linear since for f = α1f1 + α2f2 we get

gy(x) = α1g1,y(x) + α2g2,y(x),

where

gy(x) = G(y, x)f(x), g1,y = G(y, x)f1(x) and g2,y = G(y, x)f2(x).

Since χ is a linear functional (see Theorem 7.4), h(y) = α1h1(y) + α2h2(y), where
h = T (f), h1 = T (f1) and h2 = T (f2). It follows from (8.1.3) that T [A] = [T (A)].

�

In particular, linear dependencies among the indicators of compact convex sets

are preserved by linear transformations.
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(8.2) Corollary. Let T : Rn −→ R
m be a linear transformation, let A1, . . . , Ak

be compact convex sets in R
n and let α1, . . . , αk be numbers such that

α1[A1] + . . .+ αk[Ak] = 0.

Then
α1[T (A1)] + . . .+ αk[T (Ak)] = 0.

Proof. We apply the transformation T to both sides of the identity α1[A1]+ . . .+
αk[Ak] = 0. �

Corollary 8.2 is trivial for invertible linear transformations T but becomes much

less obvious for projections; see Figure 9.

A A A

A

1

4

3 2

B
3

B
4

B
1

B2

Figure 9. Four convex sets A1, A2, A3, A4 such that [A4] = [A1] +

[A2]−[A3] and their projections B1, B2, B3, B4. We observe that [B4] =

[B1] + [B2]− [B3].

PROBLEMS.

1. Prove that the Minkowski sum of compact convex sets is a compact convex

set and that there exists a commutative and associative operation f � g, called a

convolution, for functions f, g ∈ K(Rd) such that (α1f1 + α2f2) � g = α1(f1 � g) +
α2(f2 � g) for any f1, f2, g ∈ K(Rd) and any α1, α2 ∈ R and such that [A1] � [A2] =

[A1 + A2] for any compact convex sets A1, A2 ⊂ R
d.
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2. Construct an example of compact non-convex sets Ai ⊂ R
n and real numbers

αi such that
∑k

i=1 αi[Ai] = 0 but
∑k

i=1 αi[T (Ai)] �= 0 for some linear transforma-

tion T : Rn −→ R
m.

3. Construct an example of non-compact convex sets Ai ⊂ R
n and real numbers

αi such that
∑k

i=1 αi[Ai] = 0 but
∑k

i=1 αi[T (Ai)] �= 0 for some linear transforma-

tion T : Rn −→ R
m.

(8.3) Some interesting valuations. Intrinsic volumes. Let vold(A) be the

usual volume of a compact convex set A ⊂ R
d. The function vold satisfies a number

of useful properties:

(8.3.1) The volume is (finitely) additive: If A1, . . . , Am ⊂ R
d are compact convex

sets and if α1, . . . , αm are numbers such that α1[A1] + . . . + αm[Am] = 0, then

α1 vold(A1) + . . .+ αm vold(Am) = 0.

(8.3.2) The volume is invariant under isometries of Rd, that is, orthogonal transfor-

mations and translations: vold
(
T (A)
)
= vold(A) for any isometry T : Rd −→ R

d.

(8.3.3) The volume of a compact convex set A ⊂ R
d with a non-empty interior is

positive.

(8.3.4) The volume in R
d is homogeneous of degree d: vold(αA) = αd vold(A) for

α ≥ 0.

It turns out that for every k = 0, . . . , d there exists a measure wk on compact

convex sets in R
d, which satisfies properties (8.3.1)–(8.3.3) and which is homoge-

neous of degree k: wk(αA) = αkwk(A) for α > 0. These measures are called

intrinsic volumes. For k = d we get the usual volume and for k = 0 we get the

Euler characteristic.

To construct the intrinsic volumes, we observe that the volume can be extended

to a valuation ωd : K(Rd) −→ R such that ωd([A]) = vold(A) for any compact

convex set A. Indeed, we define

ωd(f) =

∫

Rd

f(x) dx for f ∈ K(Rd),

where dx is the usual Lebesgue measure on R
d. Properties of the integral imply

that ωd(α1f1 + α2f2) = α1ωd(f1) + α2ωd(f2), so ωd is a valuation.

Let L ⊂ R
d be a k-dimensional subspace and let PL be the orthogonal pro-

jection PL : Rd −→ L. Using Theorem 8.1, let us construct a linear transforma-

tion PL : K(Rd) −→ K(L) and hence a valuation ωk,L : K(L) −→ R by letting

ωk,L(f) = ωk

(
PL(f)

)
. Thus, for a compact convex set A ⊂ R

d, the value of

ωk,L([A]) is the volume of the orthogonal projection of A onto L ⊂ R
d.

The functional ωk,L[A] satisfies (8.3.1) and (8.3.3), it is homogeneous of degree

k, but it is not invariant under orthogonal transformations (although it is invariant
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under translations). To construct an invariant functional, we average ωk,L over

all k-dimensional subspaces L ⊂ R
d. Let Gk(R

d) be the set of all k-dimensional

subspaces L ⊂ R
d. It is known that Gk(R

d) possesses a manifold structure (it is

called the Grassmannian) and the rotationally invariant probability measure dL.
Hence, for f ∈ K(Rd) we let

ωk(f) =

∫

Gk(Rd)

ωk,L(f) dL.

In other words, ωk(f) is the average value of ωk,L(f) over all k-dimensional sub-

spaces L ⊂ R
d.

Clearly, ωk : K(Rd) −→ R is a valuation. For a compact convex set A ⊂ R
d we

define wk(A) := ωk([A]).

Hence wk(A) is the average volume of projections of A onto k-dimensional

subspaces in R
d. The number wk(A) is called the k-th intrinsic volume of A. It

satisfies properties (8.3.1)–(8.3.3) and it is homogeneous of degree k: wk(αA) =

αkwk(A) for α ≥ 0. It is convenient to agree that w0(A) = χ(A) and that wd(A) =

vold(A).

PROBLEMS.

1. Compute the intrinsic volumes of the unit ball B =
{
x ∈ R

d : ‖x‖ ≤ 1
}
.

2∗. Let A ⊂ R
d be a compact convex set with non-empty interior. Prove that

the surface area of A (perimeter, if d = 2) is equal to cdwd−1(A), where cd is a

constant depending on d alone. Find cd.

Here is another interesting valuation.

3. Let us fix a vector c ∈ R
d. For a non-empty compact convex set A ⊂ R

d, let

h(A; c) = max
x∈A

〈c, x〉

(when A is fixed, the function h(A, c) : Rd −→ R is called the support function of

A). Prove that there exists a valuation νc : K(Rd) −→ R such that νc([A]) = h(A; c)
for every non-empty convex compact set A ⊂ R

d.

Hint: If c �= 0, let

νc(f) =
∑
α∈R

α
(
χ(fα)− lim

ε−→+0
χ(fα+ε)

)
,

where fα is the restriction of f onto the hyperplane H =
{
x : 〈c, x〉 = α

}
.

4∗. Let K1,K2 ⊂ R
d be compact convex sets such that K1 ∪ K2 is convex.

Prove that (K1 ∪K2) + (K1 ∩K2) = K1 +K2.

Hint: Note that [K1 ∪ K2] + [K1 ∩ K2] = [K1] + [K2] and use Problem 3 to

conclude that h(K1 ∪K2; c) + h(K1 ∩K2; c) = h(K1; c) + h(K2; c) for any c ∈ R
d.

Observe that h(A+B; c) = h(A; c) + h(B; c).
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9. Polyhedra and Linear Transformations

We would like to extend the results of Section 8 to certain unbounded sets, specifi-

cally to polyhedra. Recall (see Definition 2.2) that a polyhedron is a set of solutions

to a finite system of linear inequalities. The main result of this section is that the

image of a polyhedron under a linear transformation is a polyhedron. Hence the

class of polyhedra is preserved by linear transformations. We will need this result

in Section IV.8.

The proof is based on “going down one step at a time”.

(9.1) Lemma. Let P ⊂ R
d be a polyhedron and let pr : R

d −→ R
d−1 be the

projection pr(ξ1, . . . , ξd) = (ξ1, . . . , ξd−1). Then the image pr(P ) is a polyhedron
in R

d−1.

Proof. Suppose that P is defined by a system of linear inequalities for vectors

x = (ξ1, . . . , ξd) in R
d:

P =
{
x :

d∑
j=1

αijξj ≤ βi for i = 1, . . . ,m
}
,

where αij and βj are real numbers.

Let us define I+ = {i : αid > 0}, I− = {i : αid < 0} and I0 = {i : αid = 0}.
Hence a point (ξ1, . . . , ξd−1) belongs to the projection pr(P ) if and only if

d−1∑
j=1

αijξj ≤ βi for i ∈ I0,

and there exists a number ξd which satisfies the inequalities

αidξd +

d−1∑
j=1

αijξj ≤ βi for all i ∈ I+ ∪ I−.

The latter of these two conditions is equivalent to

ξd ≤ βi

αid
−

d−1∑
j=1

αij

αid
ξj for all i ∈ I+ and

ξd ≥ βi

αid
−

d−1∑
j=1

αij

αid
ξj for all i ∈ I−.

Such a number ξd exists if and only if for no pair of numbers consisting of one of

the lower bound for ξd and one of the upper bound for ξd does the lower bound

exceed the upper bound. Thus ξd exists if and only if

βi

αid
−

d−1∑
j=1

αij

αid
ξj ≤

βk

αkd
−

d−1∑
j=1

αkj

αkd
ξj for all pairs i ∈ I− and k ∈ I+.

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



38 I. Convex Sets at Large

Hence the projection pr(P ) is the polyhedron in R
d−1 defined by the following

linear inequalities for (ξ1, . . . , ξd−1):

d−1∑
j=1

αijξj ≤ βi for all i ∈ I0 and

βi

αid
−

d−1∑
j=1

αij

αid
ξj ≤

βk

αkd
−

d−1∑
j=1

αkj

αkd
ξj for all pairs i ∈ I− and k ∈ I+.

If I0 is empty, then there are no inequalities of the first kind, and if I−, I+ or both

are empty, then there are no inequalities of the second kind. �

PROBLEMS.

1◦. Let P ⊂ R
d be a polyhedron defined by m ≥ 4 linear inequalities, and let

Q = pr(P ) ⊂ R
d−1 be its projection. Prove that Q can be defined by not more

than m2/4 linear inequalities.

2◦. Let P ⊂ R
n, P =

{
x : 〈ai, x〉 ≤ βi, i = 1, . . . ,m

}
be a polyhedron and let

T : Rn −→ R
n be an invertible linear transformation. Prove that Q = T (P ) is a

polyhedron defined by Q =
{
x : 〈ci, x〉 ≤ βi, i = 1, . . . ,m

}
, where ci = (T ∗)−1ai

and T ∗ is the conjugate linear transformation.

Now we can prove the result in full generality.

(9.2) Theorem. Let P ⊂ R
n be a polyhedron and let T : Rn −→ R

m be a linear
transformation. Then T (P ) is a polyhedron in R

m.

Proof. If n = m and T is invertible, the result follows by Problem 2 of Section

9.1. If kerT = {0}, then the restriction T : Rn −→ imT ⊂ R
m is an invertible

linear transformation and the result follows as above. For a general T , let us define

a transformation T̂ : R
n −→ R

m ⊕ R
n = R

m+n by T̂ (x) =
(
T (x), x

)
. Then

ker T̂ = {0} and hence T̂ (P ) is a polyhedron in R
m+n. Now we observe that T (P )

is obtained from T̂ (P ) by a series of n successive projections

R
m+n −→ R

m+n−1 −→ . . . −→ R
m via

(ξ1, . . . , ξm+n) �−→ (ξ1, . . . , ξm+n−1) �−→ . . . �−→ (ξ1, . . . , ξm).

Applying Lemma 9.1 m times, we conclude that T (P ) is a polyhedron. �

The procedure of obtaining the description of T (P ) from the description of P
which we employed in Lemma 9.1 and Theorem 9.2 is called the Fourier-Motzkin
Elimination.

PROBLEMS.

1. Let P ⊂ R
n be a polyhedron defined by k linear inequalities and let T :

R
n −→ R

m be a linear transformation. Estimate the number of linear inequalities

needed to define T (P ) using the construction of Theorem 9.2.
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Remark: This number is way too big. In practice, after performing each one-

step projection R
d −→ R

d−1, it is advisable to “clean” the list of obtained inequal-

ities by removing those that can be removed without changing the image of the

projection. Still, typically the number of inequalities needed to describe the pro-

jection is substantially larger than the number of inequalities needed to describe

the original polyhedron.

2◦. Prove that the Minkowski sum P1+P2 of two polyhedra in Euclidean space

is a polyhedron.

We define an important subalgebra of the algebra of closed convex sets from

Definition 7.3.

(9.3) Definition. The real vector space spanned by the indicator functions [P ],

where P ⊂ R
d is a polyhedron, is called the algebra of polyhedra and denoted P(Rd).

PROBLEMS.

1. Let T : Rn −→ R
m be a linear transformation. Prove that there exists

a linear transformation T : P(Rn) −→ P(Rm) such that T [P ] = [T (P )] for all

polyhedra P ⊂ R
n.

Hint: Cf. Theorem 8.1.

2. Prove that there exists a commutative and associative operation f � g for

functions f, g ∈ P(Rd) such that (α1f1 + α2f2) � g = α1(f1 � g) + α2(f2 � g) for

any f1, f2, g ∈ P(Rd) and such that [P1] � [P2] = [P1 + P2] for any two polyhedra

P1, P2 ⊂ R
d

Hint: Cf. Problem 1 of Section 8.2.

10. Remarks

A general reference in convexity is [W94]. Our discussion of positive polynomi-

als in Section 3 follows [R95] and [R00] with some simplifications. A classical

reference for Helly’s Theorem and its numerous applications is [DG63]. More re-

cent developments, including applications of topological methods, are surveyed in

[E93], [K95], [We97] and [Ž97] (see also references therein). See also [Bar82] for

a nice and elementary generalization of Radon’s Theorem and Helly’s Theorem and

[Mat02] for further results in this direction. For the Euler characteristic and valu-

ations, see [Kl63], [Mc93a] and [MS83]. Note that our definition of the relevant

algebras (the algebra of compact convex sets, the algebra of closed convex sets and

the algebra of polyhedra) may be different from those in [Mc93a], [MS83] and

elsewhere. Often, an equivalence relation of some kind is imposed and the algebra

is factored modulo that relation. The role of algebra multiplication is played by

the convolution operation � (which we introduce in Problem 1 of Section 8.2 and

Problem 2 of Section 9.3).

Intrinsic volumes in the context of the general theory of valuations are discussed

in [KR97]. The Fourier-Motzkin elimination procedure is discussed in detail in

[Z95].
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Chapter II

Faces and Extreme

Points

We take a closer look at convex sets. In this chapter, we are interested in local

properties of closed convex sets in Euclidean space. A finite-dimensional closed

convex set always has an interior when considered in a proper ambient space and,

therefore, has a non-trivial boundary. We explore the structure of the boundary

and define and study faces and extreme points. We look at the structure of some

particular convex sets: the Birkhoff polytope, transportation polyhedra, the mo-

ment cone, the cone of non-negative univariate polynomials and the cone of positive

semidefinite matrices. Our main tools are the Isolation Theorem in a general vector

space and the Krein-Milman Theorem in Euclidean space. Applications include the

Schur-Horn Theorem describing the set of possible diagonals of a symmetric matrix

having prescribed eigenvalues, efficient formulas for numerical integration, a char-

acterization of the polynomials that are non-negative on the interval and numerous

quadratic convexity results, such as the Brickman Theorem, which describe various

situations when the image of a quadratic map turns out to be convex. Quadratic

convexity allows us to visualize often counterintuitive results about the facial struc-

ture of the cone of positive semidefinite matrices through the existence and rigidity

properties of configurations of points in Euclidean space.

1. The Isolation Theorem

In this section, we develop one of the most useful and universal tools to explore the

structure of a convex set, both in finite and infinite dimensions. We review some

linear algebra first.

(1.1) Affine subspaces, affine hulls and linear functionals. Let V be a vector

space and let L ⊂ V be a subspace of V . The translation A = L + u is called an

41
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42 II. Faces and Extreme Points

affine subspace of V . The dimension of A is the dimension of L. We say that A
is parallel to L. In particular, if dimA = 1, the set A is called a straight line. A

straight line can be written in the parametric form A =
{
u + τv : τ ∈ R

}
, where

u, v ∈ V are vectors and v �= 0.

A linear functional is a map f : V −→ R such that

f(αu+ βv) = αf(u) + βf(v)

for all u, v ∈ V and all α, β ∈ R.

An important example of an affine subspace is an affine hyperplane.

Let f : V −→ R be a linear functional which is not identically 0 and let α ∈ R

be a number. The set

H =
{
v ∈ V : f(v) = α

}
, where α ∈ R,

is called an affine hyperplane. Often, we simply call it a hyperplane.

A linear combination

v = α1v1 + . . .+ αmvm, where α1 + . . .+ αm = 1,

is called an affine combination. Similarly, points v1, . . . , vm ∈ V are said to be

affinely independent if whenever

α1v1 + . . .+ αmvm = 0 and α1 + . . .+ αm = 0,

we must have α1 = . . . = αm = 0.

Given a set X ⊂ V , the set aff(X) of all affine combinations of points from X
is called the affine hull of X.

PROBLEMS.

1◦. Prove that an affine combination of vectors from an affine subspace is a

vector from the subspace.

2◦. Prove that the intersection of affine subspaces is an affine subspace.

3◦. Prove that an affine hyperplane is an affine subspace.

4◦. Prove that an affine subspace is a subspace if and only if it contains 0.

5◦. Let A ⊂ V be an affine subspace of dimension n. Prove that the maximum

number of affinely independent points in A is n+ 1.

6◦. Let L ⊂ V be a subspace and let v, u ∈ V be vectors. Prove that L+ u =

L+ v if and only if u− v ∈ L.

7◦. Let X ⊂ V be a set of points in a vector space V . Prove that aff(X) is the

smallest affine subspace containing X.

(1.2) Quotients, projections and codimension. Let V be a vector space and

let L ⊂ V be a subspace. We can form the quotient space V/L as follows: the

points of V/L are the affine subspaces parallel to L. Addition in V/L is defined as

follows:

A1 +A2 = A3
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provided

A1 = L+ v1, A2 = L+ v2, A3 = L+ v3 and v1 + v2 = v3

for some v1, v2 and v3.

Scalar multiplication in V/L is defined as follows:

αA1 = A2

provided

A1 = L+ v1, A2 = L+ v2 and v2 = αv1

for some v1, v2 ∈ V . Thus L itself is the 0 of the quotient V/L.

The dimension of V/L is called the codimension of L (denoted codimL).
If A = L+ u is an affine subspace, the codimension of A is defined to be the codi-

mension of L. There is a linear transformation pr : V −→ V/L, where pr(v) = L+v,
called the projection.

PROBLEMS.

1◦. Prove that addition and scalar multiplication in V/L are well defined (do

not depend on particular choices of v1 and v2).

For addition: let L ⊂ V be a subspace. Suppose there are two vectors u1, v1
such that L+u1 = L+v1 = A1 and two vectors u2, v2 such that L+u2 = L+v2 = A2.

Let u3 = u1 + u2 and v3 = v1 + v2. Prove that L+ v3 = L+ u3 = A3.

For scalar multiplication: let L ⊂ V be a subspace. Suppose there are two

vectors u1, v1 such that L + u1 = L + v1 = A1. For α ∈ R let v2 = αv1 and

u2 = αu1. Prove that L+ u2 = L+ v2 = A2.

2◦. Prove that the affine hyperplanes are exactly the affine subspaces of codi-

mension 1.

3◦. Prove that the projection pr : V −→ V/L is indeed a linear transformation,

that its image is the whole space V/L and that its kernel is L.

4◦. Let L ⊂ R
d be a subspace. Prove that dimL+ codimL = d.

Now, some convexity enters the picture.

(1.3) Halfspaces. Let V be a vector space and let H ⊂ V be an affine hyperplane.

Then the complement of H in V is the union of two convex sets, called open
halfspaces: V \H = H+ ∪H−. Indeed, suppose that H =

{
x ∈ R

d : f(x) = α
}
,

where f : V −→ R is a linear functional and α ∈ R is a number. We let

H+ =
{
x ∈ R

d : f(x) > α
}

and H− =
{
x ∈ R

d : f(x) < α
}
.

Of course, if we choose a different equation for H (say, −f(x) = −α), then H+ and

H− may be interchanged. The sets H+ = H ∪H+ and H− = H ∪H− are called

closed halfspaces. We can write

H+ =
{
x ∈ R

d : f(x) ≥ α
}

and H− =
{
x ∈ R

d : f(x) ≤ α
}
.
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hyperplane 

closed  halfspace open  halfspace

Figure 10. A hyperplane, a closed halfspace and an open halfspace

PROBLEMS.

1◦. Prove that open halfspaces and closed halfspaces are convex.

2◦. Prove that an open halfspace of Rd is an open subset of Rd and that a

closed halfspace of Rd is a closed subset of Rd.

Let us describe some basic cases of the relative position of an affine hyperplane

and a (convex) set.

(1.4) Definitions. Let V be a vector space, let A ⊂ V be a set and let H ⊂ V
be an affine hyperplane. We say that H isolates A if A is contained in one of the

closed subspaces H− or H+. We say that H strictly isolates A if A is contained in

one of the open halfspaces H− or H+.

Let V be a vector space, let A,B ⊂ V be sets and let H ⊂ V be a hyperplane.

We say that H separates A and B if A is contained in one closed halfspace and B is

contained in the other. We say that H strictly separates A and B if A is contained

in one open halfspace and B is contained in the other open halfspace.

PROBLEM.

1◦. Prove that sets A,B ⊂ V can be separated, respectively strictly separated,

by an affine hyperplane if and only if there is a linear functional f : V −→ R
d and

a number α ∈ R such that f(x) ≤ α ≤ f(y), respectively f(x) < α < f(y), for all
x ∈ A and all y ∈ B.

It turns out that in infinite-dimensional spaces there exist remarkably “shallow”

convex sets that consist of their own “boundary” alone. Such sets often demonstrate

various kinds of pathological behavior; see Problem 2 of Section 1.6, Problem 1 of

Section 2.5 and Section III.1.4. We would like to single out a class of reasonably

“solid” convex sets, which behave much more predictably.
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(1.5) Definition. Let V be a vector space and let A ⊂ V be a convex set. The

set A is called algebraically open if the intersection of A with every straight line in

V is an open interval (possibly empty). Thus if L =
{
v+ τu : τ ∈ R

}
is a straight

line in V , where v, u ∈ V , then

A ∩ L =
{
v + τu : α < τ < β

}
, where

either −∞ < α < β < +∞ (the intersection is a non-empty open interval)

or α = −∞ < β < +∞ (the intersection is an open ray)

or −∞ < α < β = +∞ (the intersection is an open ray)

or −∞ = α < β = +∞ (the intersection is the whole straight line)

or α ≥ β (the intersection is empty).

PROBLEMS.

1◦. Prove that convex open sets in R
d are algebraically open.

2. Construct an example of a (non-convex) set A ⊂ R
2 such that for every

straight line L ⊂ R
2 the intersection A∩L is an open subset in L but A is not open

in R
2.

3. Let A ⊂ R
d be a convex set. Prove that it is open if and only if it is

algebraically open.

4. Prove that if an algebraically open set is isolated by an affine hyperplane, it

is strictly isolated by the hyperplane.

5. Let V be a vector space and let A,B ⊂ V be algebraically open sets. Prove

that if A and B are separated by an affine hyperplane H, then A and B are strictly

separated by H.

6◦. Prove that the intersection of finitely many algebraically open sets is alge-

braically open.

7. Let V and W be vector spaces and let T : V −→ W be a linear transforma-

tion such that im(T ) = W . Let A ⊂ V be an algebraically open set in V . Prove

that the image T (A) is algebraically open in W .

8◦. Let A ⊂ V be an algebraically open set and let L ⊂ V be a subspace. Prove

that A ∩ L is algebraically open as a set in L.

We arrive at the main result of this section.

(1.6) The Isolation Theorem. Let V be a vector space, let A ⊂ V be an al-
gebraically open convex set and let u /∈ A be a point. Then there exists an affine
hyperplane H which contains u and strictly isolates A.

Proof. Without loss of generality we may assume that u = 0 is the origin.

First, we prove the result in the case of V = R
2. Let S =

{
x ∈ R

2 : ‖x‖ = 1
}

be the circle of radius 1 centered at the origin. Let us project A radially into S:
v �−→ v/‖v‖. Since A is convex, it is connected, and, therefore, the image of this
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projection is a connected arc Γ of S. Furthermore, since A is algebraically open, Γ

must be an open arc

Γ =
{
(cosφ, sinφ) : α < φ < β

}

of the circle S. Indeed, let x ∈ Γ be a point. Then x = v/‖v‖ for some v ∈ A,

so we can choose a straight line L through v parallel to the tangent line to S at

x. Then the intersection L ∩A will be an open interval containing v, so the radial

projection of A will contain an open arc containing x.

Next, we observe that the length of Γ cannot be greater then π, because other-
wise Γ would have contained two antipodal points x and −x and 0 would have been

in A, since A is convex. Now, let v be an endpoint of Γ (which is not in Γ, since Γ

is open). The straight line through 0 and v is the desired hyperplane, containing 0

and strictly isolating A.

A

0
�

S

Figure 11. Constructing the isolating hyperplane when d = 2

Next, suppose that dimV ≥ 2. We prove that there is a straight line L such

that 0 ∈ L and L ∩ A = ∅. To prove this, let us consider any 2-dimensional plane

P containing 0. The intersection B = P ∩ A is a convex algebraically open subset

of P (possibly empty – see Problem 8 of Section 1.5) and as we proved, there is a

line L ⊂ P such that 0 ∈ L and L ∩B = ∅. Then L is the desired straight line.

Now, we prove the theorem. Let H ⊂ V be the maximal affine subspace such

that 0 ∈ H and H ∩ A = ∅. By maximal we mean a subspace which has these

properties and is not contained in a larger subspace with the same properties. If
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V is finite-dimensional, we could choose H to be a subspace of the largest possible

dimension such that 0 ∈ H and H ∩A = ∅. If V is arbitrary, the existence of such

an H is ensured by Zorn’s Lemma. We claim that H is a hyperplane. To prove

this, consider the quotient V/H and let pr : V −→ V/H be the projection. If H
is not a hyperplane, then dimV/H ≥ 2 and pr(A) is an algebraically open subset

in V/H (see Problem 7, Section 1.5). Then, as we proved, there is a straight line

L ⊂ V/H such that 0 ∈ L and L ∩ pr(A) = ∅. Then the preimage G = pr−1(L) ={
x : pr(x) ∈ L

}
is a subspace in V , such that 0 ∈ G, G ∩ A = ∅, H ⊂ G and G is

strictly larger than H. This contradiction shows that H must be a hyperplane. �

PROBLEMS.

1◦. Construct an example of a non-convex open set A ⊂ R
2 such that 0 /∈ A

and there are no affine hyperplanes H such that 0 ∈ H and H isolates A.

2. Let V = R∞ be the vector space of all infinite sequences x = (ξ1, ξ2, ξ3, . . . )
of real numbers such that all but finitely many terms ξi are zero. One can think

of R∞ as of the space of all univariate polynomials with real coefficients. Let

A ⊂ V \ {0} be the set of all such sequences x where the last non-zero term is

strictly positive. Prove that 0 /∈ A, that A is convex, that A is not algebraically

open and that there are no affine hyperplanes H such that 0 ∈ H and H isolates

A.

3. Prove the following generalization of Theorem 1.6. Let V be a vector space,

let A ⊂ V be an algebraically open convex set and let L ⊂ V be an affine subset

such that L∩A = ∅. Then there exists an affine hyperplane H containing L which

strictly isolates A.

2. Convex Sets in Euclidean Space

In this section, we explore consequences of the Isolation Theorem for convex sets

in Euclidean space. For finite-dimensional convex sets there is no difficulty in

recognizing their interior and boundary.

(2.1) Definitions. Let A ⊂ R
d be a set. A point u ∈ A is called an interior point

of A if there exists an ε > 0 such that the (open) ball B(u, ε) =
{
x : ‖x− u‖ < ε

}
centered at u and of radius ε is contained in A: B(u, ε) ⊂ A. The set of all interior

points of A is called the interior of A and denoted int(A). The set of all non-interior

points of A is called the boundary of A and denoted ∂A.

Now we prove that if, starting from any point of a convex set, we move towards

an interior point of the set, we immediately get into the interior of the set.

(2.2) Lemma. Let A ⊂ R
d be a convex set and let u0 ∈ int(A) be an interior point

of A. Then, for any point u1 ∈ A and any 0 ≤ α < 1, the point uα = (1−α)u0+αu1

is an interior point of A.

Proof. Let B(u0, ε) ⊂ A be a ball centered at u0 and contained in A. Then

elementary geometry shows that B
(
uα, (1− α)ε

)
⊂ A; see Figure 12. �
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u

A

u
�

1

u 0

Figure 12

(2.3) Corollary. Let A ⊂ R
d be a convex set. Then int(A) is a convex set.

Proof. Let u, v ∈ int(A) be points and let w = αu + (1 − α)v for 0 ≤ α ≤ 1.

If α < 1, we apply Lemma 2.2 with u0 = v, u1 = u and w = uα to show that

w ∈ int(A). If α = 1, then w = u ∈ int(A). �

We note that Lemma 2.2 and Corollary 2.3 will be generalized to an infinite-

dimensional situation in Section III.2.

PROBLEMS.

1. Let v1, . . . , vd+1 ∈ R
d be affinely independent points in R

d. The polytope

Δ = conv
(
v1, . . . , vd+1

)
is called a d-dimensional simplex. Prove that Δ has a

non-empty interior.

Hint: Let u = (v1 + . . . + vd+1)/(d + 1) ∈ Δ. We claim that for a sufficiently

small ε > 0 we have B(u, ε) ⊂ Δ. Indeed, the matrix of the system of d+ 1 linear

equations in d+ 1 variables

γ1v1 + . . .+ γd+1vd+1 = w and γ1 + . . .+ γd+1 = 1

is non-degenerate. Therefore, for each w ∈ R
d, there is a unique solution

γ1, . . . , γd+1 and the solution depends on w continuously. If w = u, then

γ1 = . . . = γd+1 = 1/(d+ 1) > 0.

Therefore, if w is sufficiently close to u, all the γ’s are non-negative and w ∈ Δ.

2. Let A ⊂ R
d be a convex set such that int(A) �= ∅ and let H ⊂ R

d be a

hyperplane isolating int(A). Prove that H isolates A.
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We want to show that if a non-empty convex set in Euclidean space has empty

interior, then we can pass to a smaller ambient space, where the set acquires an

interior. This property makes the finite-dimensional situation radically different

from the infinite-dimensional case.

Figure 13. Example: a flat convex set in R
3 acquires interior in the

plane.

(2.4) Theorem. Let A ⊂ R
d be a convex set. If intA = ∅, then there exists an

affine subspace L ⊂ R
d such that A ⊂ L and dimL < d.

Proof. First, we claim there are no d+ 1 affinely independent points v1, . . . , vd+1

in A. For if there were such points, then Δ = conv
(
v1, . . . , vd+1

)
⊂ A and Problem

1, Section 2.3 would imply that Δ contains an interior point. Let k < d+ 1 be the

maximum number of affinely independent points in A and let v1, . . . , vk be such

points. Then, for each point v ∈ A there is a solution to the system

γ1v1 + . . .+ γkvk + γv = 0,

γ1 + . . .+ γk + γ = 0

such that γ �= 0. Then v ∈ A can be expressed as an affine combination of v1, . . . , vk,

v =

k∑
i=1

(−γi/γ)vk.

Therefore, A is contained in the affine subspace L that is the affine hull of v1, . . . , vk.
So, dimL = k − 1 < d. �

(2.5) Definition. The dimension of a convex set A ⊂ R
d is the dimension of

the smallest affine subspace that contains A. By convention, the dimension of the

empty set is −1.

PROBLEM.

1. Let A ⊂ R∞ be the set of Problem 2, Section 1.6. Prove that A does not

contain any non-empty algebraically open subset and that A is not contained in

any affine hyperplane of R∞.

Let us take a closer look at the boundary of a convex set.
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(2.6) Definitions. Let K ⊂ R
d be a closed convex set. A (possibly empty) set

F ⊂ K is called a face of K if there exists an affine hyperplane H which isolates K
and such that F = K ∩H. If F is a point, then F is called an exposed point of K.

A non-empty face F �= K is called a proper face of K.

PROBLEMS.

1◦. Prove that a face is a closed convex set and that a face of a compact convex

set is a compact convex set.

2. Find the faces of the unit ball B =
{
x ∈ R

d : ‖x‖ ≤ 1
}
.

3. Describe the faces of the d-dimensional unit cube

I =
{
x = (ξ1, . . . , ξd) : 0 ≤ ξk ≤ 1 for k = 1, . . . , d

}
.

4. Describe the faces of a d-dimensional simplex Δ = conv
(
v1, . . . , vd+1

)
, where

v1, . . . , vd+1 are affinely independent points in R
d.

5. Let K ⊂ R
d be a closed convex set. Prove that the intersection of any two

faces of K is a face of K.

6. Construct an example of a compact convex set K ⊂ R
2, a face F of K and

a face G of F such that G is not a face of K.

7. Prove that every non-empty compact convex set in R
d has an exposed point.

8. Construct a compact convex set A ⊂ R
2 whose set of exposed points is not

compact.

9∗ (Straszewicz’ Theorem). Prove that every compact convex set A ⊂ R
d is

the closure of the convex hull of the set of its exposed points.

Next, we prove that a boundary point lies in some face of a closed convex set.

(2.7) Theorem. Let K ⊂ R
d be a convex set with a non-empty interior and let

u ∈ ∂K be a point. Then there exists an affine hyperplane H, called a support
hyperplane at u, such that u ∈ H and H isolates K.

Proof. By Corollary 2.3, int(K) is a non-empty convex open set. Therefore, int(K)

is a convex, algebraically open set such that u /∈ int(K). Therefore, by Theorem

1.6, there is an affine hyperplane H containing u and isolating int(K). Then by

Problem 2, Section 2.3, H isolates K, so H is a support hyperplane at u. �

PROBLEM.

1◦. Construct an example of a closed convex set K ⊂ R
2 with a non-empty

interior and a point u ∈ ∂K such that a support hyperplane of K at u is not unique.

2◦. Let B =
{
x ∈ R

d : ‖x‖ ≤ 1
}
be the unit ball and let u ∈ ∂B be a point.

Find the support hyperplane to B at u.

(2.8) Corollary. Let K ⊂ R
d be a closed convex set with a non-empty interior

and let u ∈ ∂K be a point. Then there is a proper face F of K such that u ∈ F .
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Proof. Let H be a support hyperplane of K at u. Let F = H ∩K. �

Now we prove a version of the Isolation Theorem for convex sets in R
d.

(2.9) Theorem. Let A ⊂ R
d be a non-empty convex set and let u /∈ A be a point.

Then there is an affine hyperplane H ⊂ R
d such that u ∈ H and H isolates A.

Proof. Let us choose the minimal affine subspace L ⊂ R
d such that A ⊂ L.

Theorem 2.4 implies that A has a non-empty interior as a subset of L. If u /∈ L, we
can choose H disjoint from L. Hence we may assume that u ∈ L. Thus, restricting
ourselves to L, we see that int(A) �= ∅ (in L) and that u ∈ L. Then, by Theorem

2.7, there is an affine hyperplane Ĥ in L, such that u ∈ Ĥ and Ĥ isolates A. Then

we choose any hyperplane H such that H ∩ L = Ĥ . �

PROBLEM.

1. Let A ⊂ R
d be a convex set and let L ⊂ R

d be an affine subspace such that

L∩A = ∅. Prove that there exists an affine hyperplane H such that L ⊂ H and H
isolates A.

3. Extreme Points. The Krein-Milman Theorem for

Euclidean Space

Certain points on the boundary of a convex set capture a lot of information about

the set both in finite and infinite dimensions. Here is the central definition of this

chapter.

(3.1) Extreme points. Let V be a vector space and let A ⊂ V be a set. A point

a ∈ A is called an extreme point of A provided for any two points b, c ∈ A such

that (b+ c)/2 = a one must have b = c = a. The set of all extreme points of A is

denoted ex(A).

Here is a simple and important theorem.

(3.2) Theorem. Let V be a vector space, let A ⊂ V be a non-empty set and let
f : V −→ R be a linear functional.

1. Suppose that f attains its maximum (resp. minimum) on A at a unique
point u ∈ A, that is, f(u) > f(v) for all v �= u, v ∈ A (resp. f(u) < f(v)
for all v �= u, v ∈ A). Then u is an extreme point of A.

2. Suppose that f attains its maximum (minimum) α on A and suppose that
B =
{
x ∈ A : f(x) = α

}
is the set where the maximum (minimum) is

attained. Let u be an extreme point of B. Then u is an extreme point of A.

Proof. We will discuss the maximum case. The minimum is treated in a similar

way. Let us prove the first part. If u = (a + b)/2, then f(u) = (f(a) + f(b))/2,
where f(a) ≤ f(u) and f(b) ≤ f(u). Therefore, f(a) = f(b) = f(u) and we must

have a = b = u, because the maximum point is unique. For the second part,

suppose that u = (a + b)/2 for a, b ∈ A. Then α = f(u) = (f(a) + f(b))/2 and
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f(a), f(b) ≤ α. Thus we must have f(a) = f(b) = α, so a, b ∈ B. Then a = b = u
since u is an extreme point of B. �

PROBLEMS.

1◦. Let K ⊂ R
d be a closed convex set and let F ⊂ K be a face. Prove that if

u ∈ F is an extreme point of F , then u is an extreme point of K.

2. Let K ⊂ R
d be a compact convex set and let u ∈ K be a point such that

‖u‖ ≥ ‖v‖ for each v ∈ K. Prove that u is an extreme point of K.

We now prove a finite-dimensional version of a quite general and powerful result

obtained by M.G. Krein and D.P. Milman in 1940.

(3.3) Theorem. Let K ⊂ R
d be a compact convex set. Then K is the convex hull

of the set of its extreme points: K = conv
(
ex(K)

)
.

Proof. We proceed by induction on the dimension d. If d = 0, then K is a point

and the result follows. Suppose that d > 0. Without loss of generality we may

suppose that int(K) �= ∅. Otherwise, K lies in an affine subspace of a smaller

dimension (cf. Theorem 2.4) and the result follows by the induction hypothesis.

We must show that every point u ∈ K can be represented as a convex combination

of extreme points of K. If u ∈ ∂K, then, by Corollary 2.8, there exists a face F of

K such that u ∈ F ; see Figure 14 a). Then F lies in an affine subspace of a smaller

dimension, and by the induction hypothesis u ∈ conv
(
ex(F )
)
, so the result follows

since ex(F ) ⊂ ex(K) (see Problem 1, Section 3.2).

Fu

K K

u

a

b
a ) b )

Figure 14

Suppose that u ∈ int(K). Let us draw a straight line L through u. The

intersection L ∩K is an interval [a, b], where a, b ∈ ∂K and u is an interior point

of [a, b]; see Figure 14 b). As we already proved, a, b ∈ conv
(
ex(K)

)
. Since u is a

convex combination of a and b, the result follows. �

Theorem 3.3 is also known as Minkowski’s Theorem.
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PROBLEMS.

1. Prove that the set of extreme points of a closed convex set in R
2 is closed.

2. Construct an example of a compact convex set K ⊂ R
3 such that ex(K) is

not closed.

3. Let A ⊂ R
d be a set. Prove that u is an extreme point of conv(A) if and

only if u ∈ A and u /∈ conv
(
A \ {u}

)
.

4. Construct an example of a compact convex set K ⊂ R
2 and a point u ∈ K

such that u is an extreme point of K, but not an exposed point of K.

5◦. Prove that an exposed point is an extreme point.

6∗. Let A ⊂ R
d be a closed convex set. Prove that each extreme point of A is

a limit of exposed points of A.

The following corollary underscores the importance of extreme points for opti-

mization.

(3.4) Corollary. Let K ⊂ R
d be a compact convex set and let f : Rd −→ R be a

linear functional. Then there exists an extreme point u of K such that f(u) ≥ f(x)
for all x ∈ K.

Proof. Clearly, f attains its maximum value, say, α on K. Let F =
{
x ∈ K :

f(x) = α
}
be the corresponding face of K. Then ex(F ) �= ∅ and any u ∈ ex(F ) is

an extreme point of K; cf. Problem 1 of Section 3.2. �

Finally, a useful result whose proof resembles that of Theorem 3.3.

(3.5) Lemma. Let A ⊂ R
d be a non-empty closed convex set which does not

contain straight lines. Then A has an extreme point.

Proof. We proceed by induction on d. If d = 0, the result obviously holds. Suppose

that d > 0. Without loss of generality, we may assume that A has a non-empty

interior. Otherwise, using Theorem 2.4, we reduce the dimension d. Let us choose
a point a ∈ A and let L be any straight line passing through a. The intersection

L ∩A is a non-empty, closed interval (bounded or unbounded) that cannot be the

whole line L. Let b be a boundary point of that interval. Clearly b ∈ ∂K and

by Corollary 2.8 there is a proper face F of K containing b. We observe that F
is a closed convex set which does not contain straight lines and that dimF < d.
Applying the induction hypothesis, we conclude that F has an extreme point u.
Problem 1 of Section 3.2 implies then that u is an extreme point of A. �

4. Extreme Points of Polyhedra

For most of the rest of the chapter, we will be looking at the extreme points of

various closed convex sets in Euclidean space. We start with a polyhedron (see

Definition I.2.2), the set of solutions to finitely many linear inequalities in R
d.
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(4.1) Definition. An extreme point of a polyhedron is called a vertex.

Let us describe the vertices of a polyhedron.

(4.2) Theorem. Let P ⊂ R
d be a polyhedron

P =
{
x ∈ R

d : 〈ci, x〉 ≤ βi for i = 1, . . . ,m
}
,

where ci ∈ R
d and βi ∈ R for i = 1, . . . ,m.

For u ∈ P let
I(u) =

{
i : 〈ci, u〉 = βi

}

be the set of the inequalities that are active on u. Then u is a vertex of P if and
only if the set of vectors {ci : i ∈ I(u)} linearly spans the vector space R

d. In
particular, if u is a vertex of P , the set I(u) contains at least d indices: |I(u)| ≥ d.

Proof. Suppose that the vectors ci with i ∈ I(u) do not span R
d. Then there is a

non-zero y ∈ R
d such that 〈y, ci〉 = 0 for all i ∈ I(u). We note that 〈ci, u〉 < βi for

i /∈ I(u). For ε > 0 let u+ = u + εy and let u− = u − εy. Then u = (u+ + u−)/2,
u+ �= u− and for sufficiently small ε > 0 the points u− and u+ belong to the

polyhedron P . Hence u is not an extreme point of P .

Suppose now that u ∈ P and the vectors ci with i ∈ I(u) span R
d. Suppose that

u = (v + w)/2 for v, w ∈ P . Then 〈ci, v〉 ≤ βi and 〈ci, w〉 ≤ βi. Since 〈ci, u〉 = βi

for i ∈ I(u), we must have 〈ci, v〉 = 〈ci, w〉 = βi for i ∈ I(u). Since vectors ci with
i ∈ I(u) span R

d, the system 〈ci, x〉 = βi, i ∈ I(u), of linear equations must have a

unique solution. Therefore, v = w = u and u is an extreme point. �

P

u

cc
1 2

Figure 15. A polyhedron P , its vertex u and the vectors c1 and c2 of

active constraints
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PROBLEM.

1◦. Prove that every vertex of a polyhedron is an exposed point.

The following corollary constitutes the first part of the Weyl-Minkowski Theo-

rem.

(4.3) Corollary. A bounded polyhedron is a polytope, that is, the convex hull of
finitely many points.

Proof. By Theorem 4.2, every vertex v of a polyhedron is a solution to a system

〈ci, x〉 = βi, i ∈ I(v), of linear equations where the vectors ci : i ∈ I(v) span R
d.

Every such system has at most one solution. Therefore, the number of vertices of

a polyhedron in R
d, defined by a set of m inequalities, does not exceed

(
m

d

)
and

hence is finite. By Theorem 3.3, P is the convex hull of the set of its extreme points

and the result follows. �

PROBLEMS.

1. Prove that a polyhedron has finitely many faces.

2◦. Prove that a face of a polyhedron is a polyhedron.

3. Prove that polytopes have finitely many faces.

4∗. Let A ⊂ R
d be a closed convex set. Prove that A has finitely many faces if

and only if A is a polyhedron.

The effect of “unrealistic solutions” in linear programming problems

Let P ⊂ R
d be a polyhedron defined by a system of m linear inequalities.

Suppose we want to solve a linear programming problem:

Find γ = min〈c, x〉
Subject to x ∈ P,

where c ∈ R
d is the given vector of the objective function and x ∈ P is a vector

of variables. If the point u ∈ P where the minimum is attained is unique, then

by Part 1, Theorem 3.2, u must be a vertex of P . Theorem 4.2 then implies that

at least d of the m inequality constraints are satisfied with equalities at u. This

sometimes is not at all desired.

(4.4) Example. The Diet Problem. Suppose we have n different food ingredi-

ents, the unit price of the j-th ingredient being γj , j = 1, . . . , n. We want the diet

to be balanced with respect to m given nutrients. Suppose that αij is the content

of the i-th nutrient in the j-th ingredient. Let ξj : i = 1, . . . , n be the quantity of

the j-th ingredient in the diet and let βi : i = 1, . . . ,m be the target quantity of

the i-th nutrient.
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Trying to find the least expensive balanced diet, we come to a linear program-
ming problem:

Find γ = min

n∑
j=1

γjξj

Subject to

n∑
j=1

αijξj = βi for i = 1, . . . ,m and

ξj ≥ 0 for j = 1, . . . , n

in variables (ξ1, . . . , ξn). Let P ⊂ R
n be the polyhedron of all feasible diets

x = (ξ1, . . . , ξn). Clearly, P lies in the affine subspace defined by the m balance

constraints
∑n

j=1 αijξj = βi. The dimension of the subspace, if it is non-empty,

is at least n − m. If the optimal diet x = (ξ1, . . . , ξn) is unique, it has to be a

vertex of P , so at least n−m of the coordinates ξ1, . . . , ξn are zero. This, in turn,

means that the optimal diet would consist of at most m ingredients. For example,

if we are balancing the diet by the content of 5 nutrients, we should expect to get

a menu consisting of 5 or fewer ingredients. Such a menu can hardly be considered

realistic.

PROBLEM.

1◦. One textbook on linear algebra describes the Cambridge diet. In particu-

lar, the book says: “In fact, the manufacturer of the Cambridge diet was able to

supply 31 nutrients in precise amounts using only 33 ingredients”. Prove that the

manufacturer could have supplied the same 31 nutrients in precise amounts using

only 31 or fewer ingredients.

5. The Birkhoff Polytope

In this section, we describe the vertices of an interesting polyhedron.

(5.1) Definitions. Let σ be a permutation of the set {1, . . . , n}. The permutation
matrix Xσ is the n× n matrix Xσ = (ξσij) : i, j = 1, . . . , n, defined as follows:

ξσij =

{
1 if σ(j) = i,

0 otherwise.

For example,

if σ = (123), that is, σ(1) = 2, σ(2) = 3 and σ(3) = 1,

then Xσ =

⎛
⎝

0 0 1

1 0 0

0 1 0

⎞
⎠ .

An n × n matrix X =
(
ξij
)
: i, j = 1, . . . , n is called doubly stochastic provided it

is non-negative and the sum of entries in every row and every column is 1:

n∑
i=1

ξij = 1 for j = 1, . . . , n,
n∑

j=1

ξij = 1 for i = 1, . . . , n and

ξij ≥ 0 for i, j = 1, . . . , n.
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The polyhedron Bn of all n × n doubly stochastic matrices is called the Birkhoff
Polytope.

PROBLEMS.

1◦. Prove that the set of integer doubly stochastic matrices is the set of per-

mutation matrices.

2◦. Prove that permutation matrices Xσ are extreme points of the Birkhoff

Polytope.

3◦. Check that Bn is bounded.

The following remarkable result was established independently by G. Birkhoff

in 1946 and by J. von Neumann in 1953.

(5.2) Birkhoff - von Neumann Theorem. The vertices of the Birkhoff Polytope
Bn are exactly the n× n permutation matrices.

Proof. Because of Problem 2, Section 5.1, it suffices to prove that if X is an

extreme point of Bn, then X = Xσ for some permutation σ. We prove this by

induction on n. The case n = 1 is obvious. Suppose that n > 1. Let us consider

the affine subspace L ⊂ R
n2

consisting of the n× n matrices X = (ξij) such that

n∑
i=1

ξij = 1 for j = 1, . . . , n and

n∑
j=1

ξij = 1 for i = 1, . . . , n.

We claim that dimL = (n − 1)2. Indeed, a point (an n × n matrix X) from

L is uniquely determined by an arbitrary choice of the (n − 1)2 entries ξij for

i, j = 1, . . . , n− 1, since the remaining entries of X are found as

ξin = 1−
n−1∑
j=1

ξij for i = 1, . . . , n− 1,

ξnj = 1−
n−1∑
i=1

ξij for j = 1, . . . , n− 1 and

ξnn = (2− n) +
n−1∑
i,j=1

ξij .

In the space L, the polytope Bn is defined by n2 linear inequalities ξij ≥ 0. If X is

an extreme point of Bn, by Theorem 4.2 some (n − 1)2 of these inequalities must

be active on X. In other words, ξij = 0 for some (n − 1)2 entries of X. Clearly,

there cannot be a row containing zeros alone, and if every row contained at least

two non-zero entries, the total number of zero entries would have been at most

n(n − 2) < (n − 1)2. Therefore, there must be a row, say, i0 with ξi0j = 0 for all

but one j = j0. Now it is clear that ξi0j0 = 1 and that all other entries in the i0-th
row and in the j0-th column must be zero. Crossing out the i0-th row and the j0-th
column, we get an (n − 1) × (n − 1) doubly stochastic matrix, which must be an

extreme point of Bn−1, so we may apply the induction hypothesis. �
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PROBLEMS.

1. Prove that dimBn = (n − 1)2, so Bn has an interior point in the subspace

L, constructed in the proof.

2. Find the radius of the ball in L centered at ξij = 1/n and touching the

boundary of the polytope Bn.

3. Prove that the set F =
{
X ∈ Bn : ξ11 = 0

}
is a face of Bn of dimension

(n−1)2−1 and that G =
{
X ∈ Bn : ξ11 = 1

}
is a face of Bn of dimension (n−2)2.

4◦. Draw a picture of B2.

5◦. Let U = (ζij) be an n × n real orthogonal (that is, UU t = I) or complex

unitary (that is, UU t = I) matrix. Let βij = |ζij |2. Prove that B = (βij) is a

doubly stochastic matrix.

The problem of optimizing a linear function on the polytope Bn has an inter-

esting combinatorial interpretation.

(5.3) The Assignment Problem. The Assignment Problem is formulated as

follows: given an n×n matrix C = (γij), find a permutation σ of the set {1, . . . , n}
such that

∑n
i=1 γiσ(i) is maximum (or minimum). A typical interpretation of this

problem is as follows: there are n candidates to fill n positions. Let γij be the

“benefit” (or the “damage”) brought by the assignment of the i-th candidate to

the j-th position. We are seeking to maximize (or minimize) the total benefit

(or damage). Because of Theorem 5.2, the Assignment Problem can be posed as

a problem of finding the maximum (minimum) value of a linear function on the

polytope Bn, in short, as a linear programming problem:

Find γ = max

n∑
ij=1

γijξij

Subject to

n∑
i=1

ξij = 1 for j = 1, . . . , n,

n∑
j=1

ξij = 1 for i = 1, . . . , n and

ξij ≥ 0 for i, j = 1, . . . , n.

Indeed, by Corollary 3.4 there is an optimal point (ξij) which is an extreme point

of the Birkhoff Polytope. By Theorem 5.2, such a point gives rise to a permutation

(assignment) σ.

6. The Permutation Polytope and the Schur-Horn

Theorem

A certain projection of the Birkhoff Polytope is of particular interest.

(6.1) Definition. Let us fix a point x = (ξ1, . . . , ξn) in R
n. For a permutation σ

of the set {1, . . . , n}, let σ(x) be the vector y = (η1, . . . , ηn), where ηi = ξσ−1(i).
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6. The Permutation Polytope and the Schur-Horn Theorem 59

Let Sn be the symmetric group of all permutations of the set {1, . . . , n}. Let us

define the permutation polytope P (x) by

P (x) = conv
(
σ(x) : σ ∈ Sn

)
.

1234

1324

2314

3214

3124

2134

1243

1423

2143

3142

4123

4213

4132

4312

2413

  1432

3241

1342

2341

2431

  3421
4231 3412

4321

Figure 16. The permutation polytope P (x) for x = (1, 2, 3, 4)

In words: we permute the coordinates of a given vector x in all possible ways

and take the convex hull of the resulting vectors.

PROBLEMS.

1◦. Prove that σ(x) = Xσx, whereXσ is the permutation matrix corresponding

to σ, and that (στ )(x) = σ
(
τ (x)
)
for every two permutations σ and τ .

2◦. Let us interpret Rn2

as the space of n× n matrices X. Let us fix a vector

a ∈ R
n. Consider the linear transformation T : Rn2 −→ R

n defined by T (X) = Xa.

Prove that T (Bn) = P (a), where Bn ⊂ R
n2

is the Birkhoff Polytope.

3◦. Prove that the permutation polytope P (a), a = (α1, . . . , αn), lies in the

affine hyperplane
{
(ξ1, . . . , ξn) : ξ1 + . . .+ ξn = α1 + . . .+ αn

}
.
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4. Suppose that not all the coordinates of a are equal. Prove that dimP (a) =
n− 1.

5◦. Prove that P (a) has n! vertices if and only if the coordinates α1, . . . , αn of

a are distinct.

6. Draw a picture of the permutation polytope P (x) for x = (1, 2, 3).

Permutation polytopes sometimes appear in quite unexpected situations. The

first part of the following result was obtained by I. Schur in 1923, the second part

by A. Horn in 1954.

(6.2) Schur-Horn Theorem. Let us fix a positive integer n and real numbers
λ1, . . . , λn. Let l = (λ1, . . . , λn) ∈ R

n be a vector.
1. Let A = (αij) be an n × n real symmetric (or complex Hermitian) matrix

with the eigenvalues λ1, . . . , λn. Then the diagonal a = (α11, . . . , αnn) lies
in the permutation polytope P (l): a ∈ P (l) (Schur’s Theorem).

2. Let a ∈ P (l) be a point from the permutation polytope. Then there exists an
n× n real symmetric matrix A = (αij) with the eigenvalues λ1, . . . , λn and
the diagonal a = (α11, . . . , αnn) (Horn’s Theorem).

We will prove Schur’s Theorem only (Part 1) using Schur’s original approach.

For a proof of Part 2, see, for example, [MO79].

Proof of Part 1. Let D = diag(λ1, . . . , λn) be diagonal matrix. Suppose that

A = (αij) is a real symmetric n × n matrix with the eigenvalues λ1, . . . , λn (the

proof for complex Hermitian matrices is completely analogous). Then A = UDU t

for some orthogonal matrix U = (ζij). Hence the diagonal entries of A can be

written as

αkk =

n∑
i=1

ζ2kiλi.

Let B = (βij) be the n × n matrix such that βij = ζ2ij . Hence we may write

a = Bl, where a and l are interpreted as n-columns of real numbers. Since U is an

orthogonal matrix, the matrix B is doubly stochastic (cf. Problem 5, Section 5.2),

that is, B is a non-negative matrix with all row and column sums equal to 1. By

the Birkhoff - von Neumann Theorem (Theorem 5.2), B can be written as a convex

combination of permutation matrices Xσ, σ ∈ Sn. Therefore we conclude that a is

a convex combination of σ(l) = Xσl, that is, a ∈ P (l) by Problem 1 of Section 6.1.

�

7. The Transportation Polyhedron

In this section, we describe a family of combinatorially defined polyhedra which

includes, in particular, the Birkhoff Polytope.

Let G = (V,E) be a directed (finite) graph with the set of vertices

V = {1, . . . , n} and a set of edges E ⊂ V × V . Any two vertices i, j ∈ V can
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be either connected by an edge i → j or two edges i → j and j → i going in the

opposite directions or not connected at all. We assume that the graph has no loops

i → i.

Suppose further that to each vertex i a real number βi is assigned, which can

be positive (“demand”) or negative (“supply”) or zero (“transit”). Suppose that

to every edge i → j a number ξij is assigned so that the following conditions are

satisfied:

The balance requirement:

For every vertex i ∈ V

∑
j: (j→i)∈E

ξji −
∑

j: (i→j)∈E

ξij = βi.

No wrong way shipment:

For every edge (i → j) ∈ E,

ξij ≥ 0.

An assignment of numbers ξij satisfying the above requirements is called a feasible
flow in G.

(7.1) Definition. Let us fix a graph G = (V,E) with |V | = n vertices and |E| = m
edges and a vector b = (β1, . . . , βn). Let us think of a feasible flow (ξij) in G as

a point in R
m. The set of all feasible flows x ∈ R

m is called the transportation
polyhedron and denoted T (G, b).

PROBLEMS.

1. Prove that if the transportation polyhedron T (G, b) is non-empty, then∑n
i=1 βi = 0.

2◦. Construct an example where
∑n

i=1 βi = 0 but the transportation polyhe-

dron T (G, b) is empty.

3◦. Construct an example of an unbounded transportation polyhedron T (G, b).

4. Suppose that G does not contain any directed cycle i1 → i2 → . . . → il → i1
for l ≥ 2. Prove that T (G, b) is a bounded polyhedron (polytope). It is called the

transportation polytope.

There is a simple combinatorial description of the vertices of T (G, b).

(7.2) Proposition. Let x =
(
ξij : (i → j) ∈ E

)
be an extreme point of the

transportation polyhedron T (G, b). Let S ⊂ E be the set of all edges i → j where
ξij > 0. Then S does not contain any cycle v1 − v2 − . . . − vl − v1 : l ≥ 2, where
the vertices vk, vk+1 : k = 1, . . . , l− 1 and vl, v1 are connected by an edge (in either
direction: vk → vk+1 or vk+1 → vk).
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Proof. Suppose that there is such a cycle C consisting of edges with a strictly

positive flow. Let us choose an ε > 0 and let us construct two flows y = (ηij) and
z = (ζij) as follows:

ηij =

⎧
⎪⎨
⎪⎩

ξij if (i → j) /∈ C and (j → i) /∈ C,

ξij + ε if i = vk, j = vk+1 or i = vl, j = v1,

ξij − ε if i = vk+1, j = vk or i = v1, j = vl

and

ζij =

⎧⎪⎨
⎪⎩

ξij if (i → j) /∈ C and (j → i) /∈ C,

ξij − ε if i = vk, j = vk+1 or i = vl, j = v1,

ξij + ε if i = vk+1, j = vk or i = v1, j = vl.

In other words, we choose an orientation of the cycle C (say, clockwise). To con-

struct y, we increase the flow on the edges of the cycle that go clockwise by ε and
decrease the flow on the edges of the cycle that go counterclockwise by ε. To con-

struct z, we decrease the flow on the clockwise edges by ε and increase the flow on

the counterclockwise edges by ε; see Figure 17.

y z

���
���

	��

���

	��

	��
	��

���

	��

���

x

Figure 17. A decomposition of a circular flow x = (y + z)/2

Then the flows y and z satisfy the balance condition. Furthermore, if ε > 0

is small enough, y and z are non-negative flows and hence feasible flows. Finally,

x = (y + z)/2, which proves that x cannot be an extreme point of T (G, b). �
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(7.3) Definition. A graph without cycles is called a forest. A connected graph

without cycles is called a tree.

PROBLEMS.

1◦. Prove that a forest is a union of non-intersecting trees.

2. Prove that every (finite) forest has a vertex which is incident to at most one

vertex of the forest.

(7.4) Corollary. Suppose that all demands/supplies βi, i = 1, . . . , n, are integer
numbers. Then every extreme point of the transportation polyhedron T (G, b) is an
integer flow x = (ξij).

Proof. Let x = (ξij) be an extreme point. Proposition 7.2 asserts that the set

S ⊂ E with non-zero flows ξij is a forest. We claim that once we know S, we
can compute the flows ξij from β1, . . . , βn by using addition and subtraction only.

This, of course, would imply that all ξij are integers.

If S is a forest with at least one edge, by Problem 2, Section 7.3, there is a

vertex i such that there is only one edge with a non-zero flow incident to i. Let j
be the other end of that edge. Clearly, if this edge is i → j, we must have βi < 0

and ξij = −βi. If this edge is j → i, we must have βi > 0 and ξji = βi > 0. Now we

delete the vertex i with all edges of G incident to it, modify forest S accordingly,

and adjust the demand/supply vector: if we had ξij > 0, we let β′
j := βj + βi and

if we had ξji > 0, we let β′
j := βj − βi. Hence we get a new graph G′ with n − 1

vertices and integer demands/supplies β′
i, a new forest S′ of G′ and a new feasible

flow ξ′ij in G′ such that S′ is the set of edges where ξ′ij are strictly positive. We

proceed as above, until there are no edges in the forest. At that moment the flow

x = (ξij) is determined completely. �

PROBLEMS.

1. Deduce the Birkhoff - von Neumann Theorem (Theorem 5.2) from Corollary

7.4 as follows: consider the graph G with 2n vertices 1, . . . , n and 1′, . . . , n′ and
the edges i′ → j, where i′ = 1′, . . . , n′ and j = 1, . . . , n. Let βi = 1 be the demand

for i = 1, . . . , n and let βi′ = −1 be the supply for i′ = 1′, . . . , n′. Prove that the

feasible flows ξi′j are the doubly stochastic matrices and that the integral feasible

flows are the permutation matrices.

2. Let us fix positive integers m and n and let us interpret a real m×n matrix

as a point in R
mn. Let a = (α1, . . . , αm) and b = (β1, . . . , βn) be two vectors of

positive integers and let P (a, b) be the set of all non-negative m× n matrices with

the row sums α1, . . . , αm and the column sums β1, . . . , βn. Prove that P (a, b) is

a bounded polyhedron (polytope) and that every vertex of P (a, b) is an integer

matrix.

3∗ (M.B. Gromova). Let us interpret the space R
d with d = n3 as the space of

all 3-dimensional matrices
(
ξijk
)
where 1 ≤ i, j, k ≤ n. Let us consider the polytope
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Pn ⊂ R
d defined by the equations

n∑
i,j=1

ξijk = 1 for all k = 1, . . . , n,

n∑
i,k=1

ξijk = 1 for all j = 1, . . . , n and

n∑
j,k=1

ξijk = 1 for all i = 1, . . . , n

and inequalities

ξijk ≥ 0 for all 1 ≤ i, j, k ≤ n.

Check that Pn is a polytope (it is called the polytope of 3-dimensional polysto-
chastic matrices) and that dimP = n3 − 3n+ 1.

Prove that for any sequence 1 > σ1 > σ2 . . . > σp > 0 of rational numbers there

exists a positive integer b such that the numbers (b− 1)/b > σ1 > . . . > σp > 1/b
compose the set of values of the non-zero coordinates (not counting multiplicities)

of some vertex of Pn for some n.

Remark: This result, as well as its generalizations and extensions, is found in

[G92].

The following problem can be considered as a generalization of the Assignment

Problem; see Section 5.3.

(7.5) The Transportation Problem.

Suppose that γij are (usually non-negative) costs on the edges of the graph

G = (V,E). The problem of finding a feasible flow x ∈ T (G, b) minimizing the

total cost
∑

i→j∈E

γijξij is called the Transportation Problem.

From Theorem 3.2 (Part 1) and Proposition 7.2 we deduce that if the optimal

flow is unique, the set of edges i → j where the flow is positive must form a forest

in G. Furthermore, by Corollary 3.4 we conclude that if T (G, b) is bounded and

non-empty, then there is an optimal flow with that property.

PROBLEMS.

1. Suppose that the transportation polyhedron T (G, b) is non-empty and that

the cost γij is strictly positive for every edge i → j in E. Prove that there exists an

optimal flow in the Transportation Problem and that the set of all optimal flows is

a compact polyhedron (polytope), which is a face of the transportation polyhedron

T (G, b). Deduce that there exists an optimal solution such that the set of all edges

where the flow is positive forms a forest in G.

2. Suppose that there is an optimal solution in Problem 7.5. Prove that there

is an optimal solution such that the edges i → j with ξij > 0 constitute a forest.
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8. Convex Cones

We extend results of Section 3 on the structure of convex sets to convex cones. The

theory that we develop here is parallel to that of Section 3.

(8.1) Cones, conic hulls and extreme rays. Let V be a vector space. A set

K ⊂ V is called a cone if 0 ∈ K and λx ∈ K for every λ ≥ 0 and every x ∈ K. The

cones we will be dealing with are convex. Alternatively, we can say that K ⊂ V is

a convex cone if 0 ∈ K and if for any two points x, y ∈ K and any two numbers

α, β ≥ 0, the point z = αx+ βy is also in K.

Given points x1, . . . , xm ∈ V and non-negative numbers α1, . . . , αm, the point

x =

m∑
i=1

αixi

is called a conic combination of the points x1, . . . , xm. The set co(S) of all conic

combinations of points from a set S ⊂ V is called the conic hull of the set S. The

conic hull co(x) of a non-zero point x ∈ V is called the ray spanned by x.

Let K ⊂ V be a cone and let K1 ⊂ K be a ray. We say that K1 is an extreme
ray of K if for any u ∈ K1 and any x, y ∈ K, whenever u = (x + y)/2, we must

have x, y ∈ K1.

Let K be a cone and let x ∈ K be a point. If K1 = co(x) is an extreme ray of

K, we say that x spans an extreme ray (of K).

PROBLEMS.

1◦. Prove that co(S) is the smallest convex cone containing the set S ⊂ V ,

that is, the intersection of all convex cones in V that contain S.

2◦. Let K1,K2 ⊂ V be convex cones. Prove that the intersection K1 ∩K2 and

the Minkowski sum K1 +K2 are convex cones.

3. Construct an example of two closed convex cones K1,K2 ⊂ R
3 such that

K1 +K2 is not closed.

4. Prove that the closure of a convex cone in R
d is a convex cone.

5. Prove that 0 is an extreme point of a convex cone K if K does not contain

a straight line and construct an example of a convex cone K ⊂ R
2, such that K

contains a straight line but 0 is an extreme point of K.

6. Let S ⊂ R
d be a set. Prove that every point x ∈ co(S) is a conic combination

of some d points from S.

We need a few technical lemmas, adjusting our results from previous sections

for convex cones.

(8.2) Lemma. Let K ⊂ V be a cone and let H ⊂ V be an affine hyperplane
isolating K and such that K ∩H �= ∅. Then 0 ∈ H.

Proof. Assume that for some (non-zero) linear functional f : V −→ R and some

number α we have H =
{
x : f(x) = α

}
and that K ⊂ H−. Since 0 ∈ K, we get
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α ≥ 0. Suppose that α > 0 and let x ∈ K be a point such that f(x) = α. Then,

for λ > 1 we have f(λx) = λα > α and λx ∈ K, which contradicts the assumption

that K ⊂ H−. Hence we must have α = 0 and 0 ∈ H. �

PROBLEM.

1◦. Prove that a non-empty face of a cone is a cone.

(8.3) Definition. Let K ⊂ V be a cone. A set B ⊂ K is called a base of K if

0 /∈ B and for every point u ∈ K,u �= 0, there is a unique representation u = λv
with v ∈ B and λ > 0.

K

B

0

Figure 18. A base B of the cone K

(8.4) Lemma. Let K be a cone with a convex base B and let u ∈ K, u �= 0, be a
non-zero point from K. Then u spans an extreme ray of K if and only if u = λv,
where λ > 0 and v is an extreme point of B.

Proof. Suppose that u spans an extreme ray of K. Let v ∈ B be a point such

that u = λv for λ > 0. Suppose that v = (v1 + v2)/2. Then u = (u1 +u2)/2, where
u1 = λv1 and u2 = λv2. Since u spans an extreme ray, we must have u1 = μ1u and

u2 = μ2u for some μ1, μ2 ≥ 0. Then u1 = (μ1λ)v and u2 = (μ2λ)v. Since B is a

base, we must have v1 = v2 = v, so v is an extreme point of B.

Suppose that u = λv, where λ > 0 and v is an extreme point of B. Let us

show that u spans an extreme ray of K. Suppose that u = (u1 + u2)/2. Then

u1 = λ1v1 and u2 = λ2v2 for some v1, v2 ∈ B and some non-negative λ1, λ2.

Without loss of generality, we can assume that λ1, λ2 > 0. Then we can write

u = (λ1v1 + λ2v2)/2 = β(α1v1 + α2v2), where β = (λ1 + λ2)/2, α1 = λ1/(λ1 + λ2),

and α2 = λ2/(λ1 + λ2). Since B is a base, we must have α1v1 +α2v2 = v. We note

that α1, α2 > 0 and that α1 + α2 = 1. If v1 �= v2, it follows that v lies inside the

interval [v1, v2], which contradicts the assumption that v is an extreme point of B.

Therefore, we must have v1 = v2, so u spans an extreme ray of K. �

We obtain a conic version of Theorem 3.3.
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(8.5) Corollary. Let K ⊂ R
d be a cone with a compact base. Then every point

u ∈ K can be written as a conic combination

u =

m∑
i=1

λiui, λi ≥ 0 : i = 1, . . . ,m,

where points ui span extreme rays of K.

Proof. Let B be a base of K. Let us write u = λv, where v ∈ B. By the

Krein-Milman Theorem (Theorem 3.3), we can express v as a convex combina-

tion of extreme points v1, . . . , vm of B. Then u is a conic combination of u1 =

λ1v1, . . . , um = λmvm. By Lemma 8.4, the points ui span extreme rays of K. �

We will also need a topological fact.

(8.6) Lemma. Let K ⊂ R
d be a cone with a compact base. Then K is closed.

Proof. Let B be the compact base of K and let u /∈ K be a point. Our goal is to

show that there is a neighborhood U of u such that U ∩K = ∅.
Let δ = min

{
‖x‖ : x ∈ B

}
> 0 be the minimum distance from a point x ∈ B

to the origin. Let us choose λ0 = (‖u‖+ 1)/δ and let U1 be the open ball of radius

1 centered at u. Then, for any λ > λ0 we have λB ∩ U1 = ∅.
Let X = [0, λ0] × B and let us consider the map φ : X −→ R

d, φ(λ, x) = λx.
Since B is compact, so is X. The image φ(X) is compact and hence closed in R

d.

Since u /∈ K, we conclude that u /∈ φ(X). Therefore, there is a neighborhood U2

of u such that U ∩ φ(X) = ∅. Let U = U1 ∩ U2. Then for any λ ≥ 0, we have

U ∩ λB = ∅ and the proof follows. �

We remark that the above result can be adjusted for infinite-dimensional spaces;

see Lemma III.2.10.

PROBLEMS.

1. Let K ⊂ R
d be a cone with a compact base. Prove that 0 is a face of K.

2. Construct an example of a compact set A ⊂ R
2 such that co(A) is not closed.

3. Prove that a closed cone in R
d without straight lines has a compact base.

9. The Moment Curve and the Moment Cone

We turn our attention to non-polyhedral convex sets. In this section, we discuss

the boundary structure of an interesting non-polyhedral cone. Applications for

problems of numerical integration are discussed in Section 10 and for probability

problems in Sections III.9.3 and IV.2.

(9.1) The moment curve. Let us consider the space R
d+1 with the coordinates

x = (ξ0, ξ1, . . . , ξd) (we start with the zeroth coordinate). Given real numbers

α < β, the curve

g(τ ) = (1, τ, τ2, . . . , τd) ∈ R
d+1 for α ≤ τ ≤ β
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is called the moment curve. Hence g(τ ) lies in the affine hyperplane ξ0 = 1 in R
d+1.

Let f(x) = 〈c, x〉 be a linear function, where c = (γ0, γ1, . . . , γd). Then the

value of f on the curve g(τ ),

f
(
g(τ )
)
= γdτ

d + γd−1τ
d−1 + . . .+ γ1τ + γ0,

is a polynomial in τ of degree d.

PROBLEMS.

The problems below address some interesting properties of the moment curve

and its relatives.

1. Prove that each hyperplane H ⊂ R
d+1 such that 0 ∈ H intersects the

moment curve g(τ ) in at most d points.

2. Let δ1 < δ2 < . . . < δd be real numbers. Consider the curve in R
d

h(τ ) =
(
exp{δ1τ}, exp{δ2τ}, . . . , exp{δdτ}

)
for α ≤ τ ≤ β.

Prove that each affine hyperplane H ⊂ R
d intersects h(τ ) in at most d points.

3. Let S1 =
{
(cos τ, sin τ ) : 0 ≤ τ ≤ 2π

}
be the circle. Suppose that d = 2k

is even and let h : S1 −→ R
d be the closed curve

h(τ ) =
(
cos τ, sin τ, cos 2τ, sin 2τ, . . . , cos kτ, sin kτ

)
, 0 ≤ τ ≤ 2π.

Prove that each affine hyperplane H ⊂ R
d intersects the curve h(τ ) in at most d

points.

4. Suppose that d is odd. Prove that one cannot embed the circle S1 into R
d

in such a way that every affine hyperplane intersects the circle in not more than d
points.

5. Consider the set “Y” in the plane (three intervals having one common point).

Prove that for any d one cannot embed Y into R
d in such a way that every affine

hyperplane intersects Y in not more than d points.

Remark: A theorem of J.C. Mairhuber [M56] states that if a topological space

X can be embedded into R
d as described above, then X must be a subset of a

circle.

Now we define the main object of this section.

(9.2) Definition. The moment cone

Md+1 = co
(
g(τ ) : α ≤ τ ≤ β

)
⊂ R

d+1

is the conic hull of the curve g(τ ). Sometimes we write Md+1[α, β] instead of Md+1.
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PROBLEMS.

1◦. Prove that conv
(
g(τ ) : α ≤ τ ≤ β

)
is a compact convex base of Md+1[α, β].

2◦. Prove that dimMd+1 = d+ 1.

(9.3) Lemma. The moment cone Md+1 is closed.

Proof. Follows from Lemma 8.6 and Problem 1 of Section 9.2. �

One interesting feature of the moment cone is that every point of Md+1 can be

written as a conic combination of relatively few points of the moment curve. More-

over, if the point lies on the boundary, it cannot be written as a conic combination

with positive coefficients of too many points of the moment curve.

(9.4) Proposition. Let u ∈ ∂Md+1 be a point on the boundary of Md+1. Let us
write u as a conic combination of points on the curve g(τ ):

u =

m∑
j=1

λjg(τj), where λj > 0 for j = 1, . . . ,m and α ≤ τ1 < . . . < τm ≤ β.

Then m ≤ (d + 2)/2. Furthermore, if m = (d + 2)/2, then d is even and τ1 = α,
τm = β.

Proof. By Problem 2 of Section 9.2, intMd+1 �= ∅, so by Theorem 2.7 there exists

an affine hyperplane H that contains u and isolates Md+1. Hence by Lemma 8.2

H contains the origin, so H =
{
x : 〈c, x〉 = 0

}
for some c = (γ0, γ1, . . . , γd) �= 0.

We have 〈c, x〉 ≥ 0 for x ∈ Md+1 and 〈c, u〉 = 0. In particular, 〈c, g(τ )〉 ≥ 0 for all

α ≤ τ ≤ β. Let

p(τ ) = 〈c, g(τ )〉 = γ0 + γ1τ + . . .+ γdτ
d.

Hence p(τ ) is a polynomial of degree d which is non-negative on the interval [α, β].
Furthermore, since 〈c, u〉 = 0 and λj > 0 we must have p(τj) = 0 for j = 1, . . . ,m.

Suppose that τ∗ ∈ (α, β) is a root of p, which lies strictly inside the interval (α, β).
Then the multiplicity of the root must be an even number, since otherwise p(τ )
would change sign in a neighborhood of τ∗. The only roots of multiplicity 1 can be

τ∗ = α and τ∗ = β. The total number of roots of p, counting multiplicities, is at

most d. If all the roots of p are strictly inside (α, β), then 2m ≤ d and m ≤ d/2.
If only one endpoint of the interval [α, β] is a root of p, then there are m− 1 roots

inside (α, β) and 2(m − 1) + 1 ≤ d, so m ≤ (d + 1)/2. If both endpoints α and β
are roots of p, then there are (m− 2) roots inside (α, β), so 2 + 2(m− 2) ≤ d and

m ≤ (d+ 2)/2. Thus, in any case, m ≤ (d+ 2)/2. �

It follows then that every point u ∈ Md+1 can be written as a convex com-

bination of a small number of points on the moment curve, roughly a half of the

number one would expect for the conic hull of a general set in R
d+1; cf. Problem 6

of Section 8.1.
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(9.5) Corollary. Let

m =

{
(d+ 1)/2 if d is odd,

(d+ 2)/2 if d is even.

Let u ∈ Md+1[α, β] be a point. Then u can be represented as a conic combination
of m (or fewer) points of the curve g(τ ):

u =

m∑
i=1

λig(τi),

where λi ≥ 0 for i = 1, . . . ,m and α ≤ τ1 < . . . < τm ≤ β.

Proof. If u ∈ ∂Md+1, the result follows by Proposition 9.4. Suppose that

u ∈ intMd+1[α, β]. Let t ≥ 0 be a parameter, and let us “shrink” the interval

[α, β] −→ [α + t, β − t] as t grows. Let us consider Md+1[α + t, β − t]. When

t = (β − α)/2, the curve g consists of a single point, so the cone Md+1[α+ t, β − t]
consists of a single ray. If the point u is still in the cone, the result follows. Other-

wise, there is a value t∗ such that u ∈ ∂Md+1[α+t∗, β−t∗]. Now we use Proposition

9.4. �

10. An Application: “Double Precision” Formulas for

Numerical Integration

Corollary 9.5 has a somewhat unexpected application. It implies the existence of

some efficient formulas for numerical integration.

(10.1) Proposition. Let us fix an interval [α, β] and a non-negative continuous
density ρ(τ ) on [α, β]. Then, for any positive integer m, there exist m points
τ∗1 , . . . , τ

∗
m in the interval [α, β] and m non-negative numbers λ1, . . . , λm such that

∫ β

α

f(τ )ρ(τ ) dτ =

m∑
i=1

λif(τ
∗
i )

for any polynomial f of degree at most 2m− 1.

Proof. Let d = 2m − 1. Let u = (ξ0, . . . , ξd) ∈ R
d+1, where ξi =

∫ β

α

τ iρ(τ ) dτ

for i = 0, . . . , d. Let us prove that u ∈ Md+1[α, β]. Indeed, since ρ is continuous, u
can be written as a limit of Riemann sums:

u = lim
N−→+∞

β − α

N

N∑
i=1

ρ(τi)g(τi),

where τ1, . . . , τN are equally spaced points on [α, β]. Since every Riemann sum is

in the cone Md+1[α, β], and by Lemma 9.3 the moment cone is closed, we get that
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u ∈ Md+1. Therefore, by Corollary 9.5, we can write u as a conic combination of

m points on g(τ ):

u =

m∑
i=1

λjg(τ
∗
i ),

where λi ≥ 0 and α ≤ τ∗1 < . . . < τ∗m ≤ β. Now, let f(τ ) = γdτ
d + . . . + γ0 be a

polynomial of degree at most d. Let c = (γ0, . . . , γd) ∈ R
d+1. Then

f(τ∗i ) = 〈c, g(τ∗i )〉 for i = 1, . . . ,m and

∫ β

α

f(τ )ρ(τ ) dτ = 〈c, u〉,

which completes the proof. �

Formulas for numerical integration

∫ β

α

f(τ )ρ(τ ) dτ =

m∑
i=1

λif(τ
∗
i )

that are exact for polynomials f of degree up to d = 2m − 1 are often called the

double precision integration formulas (for obvious reasons). The proof of Proposi-

tion 10.1 explains the term “moment cone”. The points of Md+1[α, β] correspond
to the moments of non-negative densities ρ(τ ) on [α, β]:

x =

(∫ β

α

ρ(τ ) dτ,

∫ β

α

τρ(τ ) dτ, . . . ,

∫ β

α

τdρ(τ ) dτ

)
.

As ρ varies, x ranges over the points in Md+1[α, β].

PROBLEMS.

1. Prove that one cannot find m points τ∗1 , . . . , τ
∗
m in the interval [0, 1] and m

real numbers λ1, . . . , λm such that

∫ 1

0

f(τ ) dτ =

m∑
i=1

λif(τ
∗
i )

for all polynomials f of degree 2m.

2. Prove that for an interval [α, β], for every strictly positive continuous

density ρ(τ ) on [α, β] and for every positive integer m there is only one set of

points τ∗1 , . . . , τ
∗
m in the interval [α, β] and only one set of non-negative numbers

λ1, . . . , λm such that ∫ β

α

f(τ )ρ(τ ) dτ =

m∑
i=1

λif(τ
∗
i )

for every polynomial f of degree at most 2m− 1.

3∗. A function

f(τ ) = γ0 +
d∑

k=1

(αk sin kτ + βk cos kτ ) for 0 ≤ τ ≤ 2π
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is called a trigonometric polynomial of degree at most d. Let ρ be a non-negative

continuous function on [0, 2π] such that ρ(0) = ρ(2π). Prove that there exist d+ 1

points 0 ≤ τ∗0 < . . . < τ∗d < 2π and d + 1 non-negative numbers λ0, . . . , λd such

that the formula ∫ 2π

0

f(τ )ρ(τ ) dτ =

d∑
i=0

λif(τ
∗
i )

is exact for any trigonometric polynomial of degree at most d.

Hint: Use Problem 3 of Section 9.1.

4∗. Let us fix d = 2m distinct real numbers δ1, . . . , δd. A function

f(τ ) =

d∑
i=1

αi exp{δiτ}

is called an exponential polynomial with exponents δ1, . . . , δd. Let ρ be a non-

negative continuous density in the interval [α, β]. Prove that there exist m points

τ∗1 , . . . , τ
∗
m in the interval [α, β] and m non-negative numbers λ1, . . . , λm, such that

∫ β

α

f(τ )ρ(τ ) dτ =

m∑
i=1

λif(τ
∗
i )

for any exponential polynomial with exponents δ1, . . . , δd.

Hint: Use Problem 2 of Section 9.1.

Let us consider some small examples of double precision formulas for evaluating∫ 1

0

f(τ ) dτ .

(10.2) Example. The formula that uses one node and is exact for polynomials of

degree at most 1 is ∫ 1

0

f(τ ) dτ = f
(1
2

)
.

PROBLEM.

1◦. Prove that the formula of Example 10.2 is indeed exact on polynomials of

degree at most 1 and that this is the only such formula.

(10.3) Example. Let us find formulas that use two nodes and are exact on poly-

nomials of degree at most 2. In the xy plane, let us consider the parabola arc{
g(τ ) = (τ, τ2) : 0 ≤ τ ≤ 1

}
. Let u = (1/2, 1/3). There are infinitely many

formulas ∫ 1

0

f(τ ) dτ = λ1f(τ
∗
1 ) + λ2f(τ

∗
2 )

that are exact on polynomials of degree 2. The necessary and sufficient condition

for 0 ≤ τ∗1 < τ∗2 ≤ 1 is that the interval [g(τ∗1 ), g(τ
∗
2 )] in the xy plane contains u; see
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Figure 19. Then λ1 and λ2 are found from u = λ1g(τ
∗
1 ) + λ2g(τ

∗
2 ). For example, if

we choose τ∗1 = 0, then τ∗2 = 2/3 and we get a formula∫ 1

0

f(τ ) dτ =
1

4
f(0) +

3

4
f
(2
3

)
.

0

1

1

( 1, 1 )


����������2
u

Figure 19

PROBLEM.

1. Find the one-parametric family of formulas with two nodes which are exact

on polynomials of degree 2.

(10.4) Example. Here is a formula with two nodes which is exact for polynomials

of degree at most 3:∫ 1

0

f(τ ) dτ =
1

2
f
(1
2
− 1

2
√
3

)
+

1

2
f
(1
2
+

1

2
√
3

)
.

PROBLEM.

1. Prove that the above formula is indeed exact on polynomials of degree at

most 3 and that this is the only such formula which uses two nodes.

11. The Cone of Non-negative Polynomials

The cone we consider in this section is dual to the moment cone (in the sense

rigorously described later; see Section IV.2). We recall that we have considered the

set of positive multivariate polynomials in Section I.3.

(11.1) Definition. Let us interpret the space Rd+1 as the space of all polynomials

in one variable τ of degree at most d: a polynomial γ0+γ1τ+. . .+γdτ
d is represented

by the point (γ0, . . . , γd). Let us fix numbers α < β and let K+[α, β] ⊂ R
d+1 be

the set of all polynomials p that are non-negative on the interval [α, β]: p(τ ) ≥ 0

for all τ ∈ [α, β]. Sometimes we write K+ instead of K+[α, β].
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PROBLEMS.

1◦. Prove that K+[α, β] is a closed convex cone in R
d+1.

2◦. Prove that K+[α, β] has a non-empty interior.

3. Prove that p ∈ ∂K+ if and only if p(τ ) ≥ 0 for all τ ∈ [α, β] and p(τ0) = 0

for some τ0 ∈ [α, β].

Let us describe the extreme rays of K+[α, β].

(11.2) Proposition. The cone K+[α, β] has a compact base. A polynomial
p ∈ K+[α, β] spans an extreme ray of K+[α, β] if and only if the polynomial p
is one of the following types:

p(τ ) =δ

k∏
i=1

(τ − τi)
2, 2k = d,

p(τ ) =δ(τ − α)(β − τ )
k∏

i=1

(τ − τi)
2, 2k + 2 = d

for d even,

p(τ ) =δ(τ − α)

k∏
i=1

(τ − τi)
2, 2k + 1 = d,

p(τ ) =δ(β − τ )

k∏
i=1

(τ − τi)
2, 2k + 1 = d

for d odd, where δ > 0 and τ1, . . . , τk are (not necessarily distinct) points from the
interval [α, β].

Proof. Let

B =
{
q ∈ K+ :

∫ β

α

q(τ ) dτ = 1
}
.

Obviously, B is a non-empty closed convex set. It is also clear that for any p ∈ K+,

p �= 0, there is a unique representation p = λq for q ∈ B and λ > 0; we take

λ =

∫ β

α

p(τ ) dτ.

We wish to show that B is compact. Let us define a norm N : Rd+1 −→ R by

N(p) =

∫ β

α

|p(τ )| dτ.

Let ε > 0 be the minimum value of the continuous function N on the unit sphere

S
d =
{
p : ‖p‖ = 1

}
, where ‖ · ‖ is the usual Euclidean norm. Then ‖p‖ ≤ 1/ε for

all p ∈ B, so B is compact. Hence B is a compact base of K+.
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Let p ∈ K+ and suppose that co(p) is an extreme ray of K+. If deg p < d, we
can write p = (p++p−)/2, where p+ = p+ε(τ−α)p and p− = p−ε(τ−α)p. If ε > 0

is sufficiently small, then p+, p− ∈ K+[α, β] and p− and p+ are not proportional to

p, which is a contradiction. Hence deg p = d. We can factor p = qr, where q, r ∈ K+

and r is a polynomial without any root in the interval [α, β]. By continuity, we may

choose a sufficiently small ε > 0 such that r− = r− ε and r+ = r+ ε are both non-

negative on [α, β]. We can write p = (p+ + p−)/2, where p+ = qr+ and p− = qr−.
Since co(p) is an extreme ray, r+ and r− must be proportional to r and, therefore,

r must be a constant. Summarizing, p has d roots in the interval [α, β]. Finally, the
multiplicity of every root of p which lies inside (α, β) must be even, since otherwise

p changes its sign in a neighborhood of the root. So the polynomials that span

extreme rays of K+ must have the required structure.

�

�

� 

�

p-

p

p�

Figure 20. Decomposition p = (p+ + p−)/2 of a positive polynomial

It remains to prove that the polynomials having the required type indeed span

extreme rays of K+. Suppose that p = (p1 + p2)/2 for some p1, p2 ∈ K+. We

claim that every root τ∗ of p of multiplicity m must be a root of both p1 and p2
of multiplicity at least m. Otherwise, for one of the polynomials pi, i = 1, 2, we

will have pi(τ
∗) = . . . = p

(k−1)
i (τ∗) = 0, p

(k)
i (τ∗) < 0 and for the other polynomial

we will have pi(τ
∗) = . . . = p

(k−1)
i (τ∗) = 0, p

(k)
i (τ∗) > 0 for some 0 ≤ k ≤ m.

Therefore, one of the polynomials p1 or p2 would turn negative for some τ ∈ [α, β]
in a small neighborhood of the root τ∗. Since p has d roots, both p1 and p2 must

be proportional to p.

�

Proposition 11.2 allows us to describe the structure of polynomials which are

non-negative on a given interval [α, β].

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



76 II. Faces and Extreme Points

(11.3) Corollary. Let p(τ ) be a polynomial such that p(τ ) ≥ 0 for all τ ∈ [α, β].

If d = 2k is even, then

p(τ ) = (τ − α)(β − τ )
∑
i∈I

q2i (τ ) +
∑
j∈J

q2j (τ )

for some polynomials qi, qj. Furthermore, we can choose qi, qj is such a way that
deg qi = k − 1 for i ∈ I, deg qj = k for j ∈ J and all roots of qi, qj are real and
belong to the interval [α, β].

If d = 2k + 1 is odd, then

p(τ ) = (τ − α)
∑
i∈I

q2i (τ ) + (β − τ )
∑
j∈J

q2j (τ )

for some polynomials qi, qj. Furthermore, we can choose qi, qj in such a way that
deg qi = deg qj = k for i ∈ I, j ∈ J and all roots of qi, qj are real and belong to the
interval [α, β].

Proof. Follows from Corollary 8.5 and Proposition 11.2. �

PROBLEMS.

1∗. Prove that a polynomial p(τ ) of degree d, which is non-negative on [α, β],
has a unique representation

p(τ ) =

{
δ
∏k

i=1(τ − τ2i−1)
2 + γ(τ − α)(β − τ )

∏k−1
i=1 (τ − τ2i)

2 if d = 2k,

δ(τ − α)
∏k

i=1(τ − τ2i)
2 + γ(β − τ )

∏k
i=1(τ − τ2i−1)

2 if d = 2k + 1,

where γ, δ > 0 and α ≤ τ1 ≤ τ2 ≤ . . . ≤ τd−1 ≤ β.

Remark: See Chapter II, Section 10 of [KS66].

2. Let K+[0,+∞) ⊂ R
d+1 be the set of all polynomials p(τ ) of degree at most d

such that p(τ ) ≥ 0 for all τ ≥ 0. Prove that K+[0,+∞) is a closed convex cone with

a compact base and that the polynomials that span the extreme rays of K+[0,+∞)

are

p(τ ) = δ

k∏
i=1

(τ − τi)
2 (2k ≤ d) and p(τ ) = δτ

k∏
i=1

(τ − τi)
2 (2k + 1 ≤ d),

where δ > 0 and τi ≥ 0 for i = 1, . . . , k.

Deduce that every polynomial p which is non-negative on [0,+∞) can be rep-

resented in the form

p(τ ) = τ
m∑
i∈I

q2i (τ ) +
∑
j∈J

q2j (τ ),

where qi and qj are polynomials with all roots real and non-negative.

3. Let K+(−∞,+∞) ⊂ R
d+1 be the set of all polynomials p(τ ) of degree at

most d such that p(τ ) ≥ 0 for all τ ∈ R. Prove that K+(−∞,+∞) is a closed
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convex cone with a compact base and that the polynomials that span the extreme

rays of K+(−∞,+∞) are

p(τ ) = δ

k∏
i=1

(τ − τi)
2, 2k ≤ d,

where δ > 0.

Deduce that every polynomial p which is non-negative on (−∞,+∞) can be

represented in the form

p(τ ) =
∑
i∈I

q2i (τ ),

where qi are polynomials with all real roots.

4. Let d = 2. Draw a picture of the cone of the quadratic polynomials aτ2 +
bτ + c in R

3 =
{
(a, b, c) : a, b, c ∈ R

}
that are non-negative on (−∞,+∞) in the

axes a, b and c, describe the sections of the cone by the planes a = 0, b = 0 and

c = 0 and find a compact base of the cone.

Figure 21. The cone of non-negative polynomials aτ2 + bτ + c (a

general view)

5∗. Prove that every polynomial p(τ ) of degree 2k such that p(τ ) ≥ 0 for all

τ ∈ R admits a unique representation of the form

p(τ ) = δ

k∏
i=1

(τ − τi)
2 + γ

k−1∏
i=1

(τ − τ ′i)
2,

where δ, γ > 0 and τ1 < τ ′1 < τ2 < τ ′2 < . . . < τk−1 < τ ′k−1 < τk.

In particular, every non-negative polynomial is the sum of only two squares of

polynomials.

Remark: See Chapter VI, Section 8 of [KS66].

For Problems 6–8 see Section 6.3 of [BC98] and [R00].

6∗ (Hilbert’s Theorem). Let p(x, y, x) be a homogeneous polynomial of degree

4 in three real variables such that p(x, y, z) ≥ 0 for all real x, y and z. Prove that

p can be written as a sum of squares of quadratic forms in x, y and z.
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7∗ (T. Motzkin). Let

p(x, y, z) = x4y2 + x2y4 + z6 − 3x2y2z2.

Prove that p(x, y, z) ≥ 0 for all real x, y and z and yet p cannot be written as a

sum of squares of polynomials.

8∗ (M.-D. Choi and T.-Y. Lam). Let

p(x, y, z, w) = w4 + x2y2 + y2z2 + z2x2 − 4xyzw.

Prove that p(x, y, z, w) ≥ 0 for all real x, y, z and w and yet p cannot be written as

a sum of squares of polynomials.

12. The Cone of Positive Semidefinite Matrices

The cone of positive semidefinite matrices studied in this section is arguably the

most important of all non-polyhedral cones whose facial structure we completely

understand. It is the central object in semidefinite programming (see Section IV.10)

and various questions regarding the moment cone and the cone of non-negative

polynomials can be reduced to positive semidefiniteness of certain matrices (see

Section IV.2).

As usual, we review some linear algebra first.

(12.1) The space of symmetric matrices. An n×n matrix A = (aij) is called
symmetric, provided aij = aji for i, j = 1, . . . , n. We identify the vector space Symn

of all n×n symmetric matrices A with the Euclidean space Rd, where d = n(n+1)/2.
Let A be an n×n symmetric matrix and let U be an n×n orthogonal matrix (that

is, U t = U−1). Then U−1AU is a symmetric matrix. For every symmetric n × n
matrix A there is an orthogonal matrix U such that U−1AU is a diagonal matrix,

having the eigenvalues of A on the diagonal. The number of non-zero eigenvalues

is equal to the rank of A.

The scalar product of two symmetric matrices A = (aij) and B = (bij) is

defined as

〈A,B〉 =
n∑

i,j=1

aijbij .

An important formula for the scalar product is

〈A,B〉 = tr(AB) = tr(BA),

where tr is the trace, that is, the sum of all diagonal entries. In particular, it follows

that if U is an n× n orthogonal matrix, then

〈U−1AU, U−1BU〉 = 〈A,B〉,

since

〈U−1AU, U−1BU〉 = tr(U−1AUU−1BU) = tr(U−1ABU) = tr(AB) = 〈A,B〉
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(we use that tr(C) = tr(U−1CU) for any invertible U). With a symmetric matrix

A = (aij) we associate the quadratic form qA : Rn −→ R:

qA(x) =

n∑
i,j=1

aijξiξj ,

where x = (ξ1, . . . , ξn) ∈ R
n. If x = (ξ1, . . . , ξn), let us denote by x⊗ x the n× n

symmetric matrix X = (xij) where xij = ξiξj . Then one can write

qA(x) = 〈A, x⊗ x〉.

PROBLEMS.

1◦. Prove that the dimension of the space of symmetric n×n matrices is indeed

n(n+ 1)/2.

2◦. Prove that
∑n

i,j=1 aijbij = tr(AB), where A = (aij) and B = (bij) are

symmetric n× n matrices.

3◦. Check that U tAU is a symmetric matrix, provided U is any n× n matrix

and A is an n× n symmetric matrix.

Now we define the cone we are interested in.

(12.2) Positive semidefinite matrices. An n× n symmetric matrix A is called

positive semidefinite provided qA(x) ≥ 0 for all x ∈ R
n. An n×n symmetric matrix

A is called positive definite provided A is positive semidefinite and qA(x) = 0 only

if x = 0. We denote the set of all positive semidefinite n × n symmetric matrices

by S+.

A symmetric matrix is positive semidefinite if and only if all eigenvalues of A
are non-negative and positive definite if and only if all eigenvalues are positive. In

particular, if A is a positive (semi)definite matrix and U is an orthogonal matrix,

then U−1AU is a positive (semi)definite matrix. In other words, for any orthogonal

matrix U , the linear transformation X �−→ U−1XU of Symn maps the set S+ onto

itself. If A is positive semidefinite, then all diagonal entries are non-negative and

a2ij ≤ aiiajj for every pair 1 ≤ i �= j ≤ n.

We recall that X is positive semidefinite of rankX ≤ 1 if and only if X can be

written as X = x⊗ x for some x ∈ R
n.

PROBLEMS.

1◦. Prove that S+ ⊂ Symn is a closed convex cone which does not contain

straight lines.

2◦. Prove that A is an interior point of S+ if and only if A is positive definite.

3. Prove that for every two points x, y ∈ intS+ there exists a non-degenerate

linear transformation T of Symn, such that T
(
S+

)
= S+ and T (x) = y. In other

words, the cone S+ is homogeneous. Prove that the cone Rd
+ =
{
(ξ1, . . . , ξd) : ξi ≥ 0

for i = 1, . . . , d
}
is also homogeneous.
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4. Prove that B =
{
A ∈ S+ : tr(A) = 1

}
is a compact base of S+.

5. The space Sym2 is identified with R
3. Draw a picture of the cone of positive

semidefinite 2× 2 matrices.

6◦. Check that if A is a positive semidefinite 2 × 2 matrix, then a11, a22 ≥ 0

and a212 ≤ a11a22.

We arrive at the main result of this section.

(12.3) Proposition. Let A be an n×n positive semidefinite matrix. Suppose that
rankA = r. If r = n, then A is an interior point of S+. If r < n, then A is
an interior point of a face F of S+, where dimF = r(r + 1)/2. There is a rank-
preserving isometry identifying the face F with the cone of positive semidefinite
r × r matrices.

Proof. If rankA = n, then A is positive definite, so the result follows by Problem

2, Section 12.2.

Suppose that rankA = r < n. We will construct a hyperplane H ⊂ Symn

which contains A and isolates S+. Let λ1, . . . , λr > 0 be the non-zero eigenvalues

of A. Let us find an orthogonal matrix U , such that U−1AU = D, where D =

diag
(
λ1, . . . , λr, 0, . . . , 0

)
. Let C = diag

(
0, . . . , 0, 1, . . . , 1

)
be the matrix whose

first r diagonal entries are 0 and the last n − r diagonal entries are 1’s, and let

Q = UCU−1.

�

�

�

0 0

1

i

r
D =

r

r 0
C =

0

0
1

1
0

0

0

n - r

n - r
1

,

Figure 22. The structure of matrices D and C

Then Q is a non-zero positive semidefinite matrix and

〈Q,A〉 = 〈UCU−1, UDU−1〉 = 〈C,D〉 = 0.

Furthermore, for any positive semidefinite n×n matrix X, the matrix Y = U−1XU
is positive semidefinite and

〈Q,X〉 = 〈UCU−1, UY U−1〉 = 〈C, Y 〉 ≥ 0,
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12. The Cone of Positive Semidefinite Matrices 81

since the diagonal entries of Y must be non-negative. Therefore, the hyperplane

H =
{
X ∈ Symn : 〈Q,X〉 = 0

}
isolates S+ and contains A. Let us describe the

corresponding face

F =
{
X ∈ S+ : 〈Q,X〉 = 0

}
.

The map X �−→ Y = U−1XU is a non-degenerate linear transformation which

maps S+ onto itself, maps Q onto C and A onto D. Then the face F is mapped

onto a face F ′, containing D and consisting of all positive semidefinite matrices Y
such that 〈Y,C〉 = 0:

F ′ =
{
Y ∈ S+ : 〈Y,C〉 = 0

}
.

Clearly, Y must have the last n − r diagonal entries equal to zero. Since Y is

positive semidefinite, all entries in the last n− r rows and last n− r columns must

be 0 (see Section 12.2). The upper left r × r submatrix of Y can be an arbitrary

positive semidefinite matrix.

positive 

semidefinite

0

0

0

r

n - r

n - r

Y =
      r

Figure 23. The structure of matrix Y

Thus the face F ′ may be identified with the cone of all r×r positive semidefinite

matrices (in particular, dimF ′ = (r + 1)r/2) and it is seen that F ′ contains D in

its interior. Since Y �−→ X = UY U−1 is a non-degenerate linear transformation,

which maps D onto A and F ′ onto F , we conclude that dimF = r(r+1)/2 and F
contains A in its interior. �

PROBLEMS.

1. Prove that the dimensions of faces F of S+ are 0, 1, 3, . . . , r(r + 1)/2, . . . .
Prove that if F is a face of S and dimF = r(r + 1)/2, then there is a matrix

A ∈ intF such that rankA = r.

2. Let S+ be the cone of n× n positive semidefinite matrices, let F ⊂ S+ be a

face and let r be a positive integer such that dimF < r(r+1)/2 ≤ n(n+1)/2. Prove
that there is a face F ′ of S+ such that F is a face of F ′ and dimF ′ = r(r + 1)/2.

3. Let us choose positive integers 0 < r < n, let S1 be the cone of positive

semidefinite n × n matrices and let S2 be the cone of positive semidefinite r × r
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82 II. Faces and Extreme Points

matrices. Let F ⊂ S1 be a face such that dimF = r(r + 1)/2. Construct an

isometry (that is, a distance-preserving map) S2 −→ F .

4. Prove that A ∈ S+ spans an extreme ray of S+ if and only if rankA = 1.

Using Proposition 12.3, we get the following nice description of the facial struc-

ture of the cone of positive semidefinite matrices S+.

(12.4) Corollary. The faces of S+ ⊂ Symn are parameterized by the subspaces of
R

n. For a subspace L ⊂ R
n, let

FL =
{
Y ∈ S+ : L ⊂ kerY

}
.

Then FL is a face of S+ and dimFL = r(r + 1)/2, where r = codimL. As L
ranges over all subspaces of codimension r, FL ranges over all faces of dimension
r(r + 1)/2.

Proof. Given a subspace L of codimension r, let us choose the coordinates so that

L =
{
(0, . . . , 0, ξr+1, . . . , ξn)

}
. Then FL consists of the matrices Y depicted in

Figure 23. The supporting hyperplane for FL is H =
{
X : 〈C,X〉 = 0

}
, where C

is depicted in Figure 22. If F is a face of S+, then F = FL, where L = kerA and

A is a matrix in the interior of F . �

K

P

0
F
L

L

0

Figure 24. The correspondence between subspaces of Rn and faces of

S+ for n = 2

PROBLEM.

1. Let L1 and L2 be subspaces of Rn. Prove that FL1
is a face of FL2

if and

only if L2 ⊂ L1.

Problem 1 asserts that the face lattice of the cone of n×n positive semidefinite

matrices is (anti)isomorphic to the lattice of all subspaces of Rn.
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13. Linear Equations in Positive Semidefinite Matrices

In the next three sections we discuss various applications of the results of Section 12.

We will be dealing with systems of linear equations in matrices and it is convenient

to adopt some notation. To express that X is positive semidefinite, instead of

writing X ∈ S+, we write X � 0. To express that X is positive definite, we

write X � 0. Proposition 12.3 has an interesting implication: if a system of linear

equations in positive semidefinite matrices has a solution, it has a solution of a

small rank.

(13.1) Proposition. Let A ⊂ Symn be an affine subspace such that the intersec-
tion S+ ∩ A is non-empty and codimA < (r + 2)(r + 1)/2 for some non-negative
integer r. Then there is a matrix X ∈ S+ ∩A such that rankX ≤ r.

Equivalently, let us fix k symmetric n×n matrices A1, . . . , Ak and k real num-
bers α1, . . . , αk. If there is a matrix X � 0 such that

〈Ai, X〉 = αi for i = 1, . . . , k,

then there is a matrix X0 � 0 such that

〈Ai, X0〉 = αi for i = 1, . . . , k

and, additionally

rankX0 ≤
⌊√

8k + 1− 1

2

⌋
.

Proof. To see that the second statement is indeed equivalent to the first one, let

A =
{
X ∈ Symn : 〈Ai, X〉 = αi for i = 1, . . . , k

}

be the affine subspace of symmetric n×n matrices which satisfy the given k matrix

equations. Then codimA ≤ k and k < (r + 2)(r + 1)/2 if and only if

r ≤
⌊√8k + 1− 1

2

⌋
.

We prove the first statement. Let K = S+ ∩A. The set K is non-empty, closed

and does not contain straight lines (cf. Problem 1 of Section 12.2). Therefore, by

Lemma 3.5, K contains an extreme point X0.

Suppose that rankX0 = m. Then, by Proposition 12.3, X0 must be an interior

point of a face F of S+ of dimension m(m+1)/2. We observe that X0 is an interior

point of the intersection F ∩ A. Since X0 is an extreme point, we must have

dim(F ∩ A) = 0, which implies that codimA > dimF , so codimA > m(m+ 1)/2.
Hence m ≤ r and the proof follows. �

Here is an immediate consequence for systems of two matrix equations:
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84 II. Faces and Extreme Points

(13.2) Corollary. Let us fix two symmetric n×n matrices A = (aij) and B = (bij)
and two real numbers α and β. The system of two quadratic equations

n∑
i,j=1

aijξiξj = α and
n∑

i,j=1

bijξiξj = β

has a real solution x = (ξ1, . . . , ξn) if and only if the system of two linear matrix
equations

〈A,X〉 = α and 〈B,X〉 = β

has a positive semidefinite solution X � 0.

Proof. Let x = (ξ1, . . . , ξn) be a solution to the system of quadratic equations.

Let us define X = (xij) by xij = ξiξj . Then X is a positive semidefinite matrix

and 〈A,X〉 = α and 〈B,X〉 = β.

On the other hand, suppose there is a solution X � 0 to the system of equations

〈A,X〉 = α and 〈B,X〉 = β. Proposition 13.1 implies that there is a solution such

that rankX ≤ 1 (substitute k = 2 in the formula). Then X = (xij) can be written

as xij = ξiξj for some set of numbers ξ1, . . . , ξn. Then x = (ξ1, . . . , ξn) is a solution

to the system of quadratic equations. �

The following corollary is an example of a hidden convexity result: the image

of a (possibly non-convex) set under a (possibly non-linear) map turns out to be

convex with “no obvious reason”. One (hidden) reason why this might happen is

that the image in question coincides with the image of some convex set under some

linear transformation.

(13.3) Corollary. Let q1, q2 : Rn −→ R be quadratic forms. Consider the map
φ : Rn −→ R

2, φ(x) =
(
q1(x), q2(x)

)
. Then the image φ(Rn) is a convex cone in

R
2.

Proof. Let A = (aij) be the matrix of q1 and let B = (bij) be the matrix of q2, so

q1(x) =

n∑
i,j=1

aijξiξj and q2(x) =

n∑
i,j=1

bijξiξj

for x = (ξ1, . . . , ξn). By Corollary 13.2, the image φ(Rn) can be viewed as the

image of the convex cone S+ of positive semidefinite matrices under the linear

transformation X �−→
(
〈A,X〉, 〈B,X〉

)
and hence is a convex cone. �

This result is due to L.L. Dines (1941).

PROBLEMS.

1◦. Construct an example of a system of three quadratic equations

n∑
i,j=1

aijξiξj = α,

n∑
i,j=1

bijξiξj = β,

n∑
i,j=1

cijξiξj = γ
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13. Linear Equations in Positive Semidefinite Matrices 85

which does not have a solution (ξ1, . . . , ξn), but such that the corresponding system

of linear matrix equations

〈A,X〉 = α, 〈B,X〉 = β, 〈C,X〉 = γ

has a positive semidefinite solution X � 0.

2◦. Check that X = (xij) has the form xij = ξiξj if and only if rankX ≤ 1 and

X is positive semidefinite.

3 (C-K. Li and B-S. Tam). Let A1, . . . , Ak be n × n symmetric matrices and

let α1, . . . , αk be real numbers. Let

K =
{
X � 0 : 〈Ai, X〉 = αi, i = 1, . . . , k

}
.

Suppose that X ∈ K and that rankX = r. Let us decompose X = QQt, where

Q is an n × r matrix of rank r. Prove that the dimension of the smallest face of

K containing X is equal to the codimension of span
(
QtA1Q, . . . , QtAkQ

)
in the

space of r × r symmetric matrices.

Remark: See Theorem 31.5.3 of [DL97].

4. Prove the following strengthening of Corollary 13.2. Let us fix two symmetric

n × n matrices A = (aij) and B = (bij) and three real numbers α, β and γ. The

system of two quadratic equations

n∑
i,j=1

aijξiξj = α and

n∑
i,j=1

bijξiξj = β

has a real solution x = (ξ1, . . . , ξn) such that
∑n

i=1 ξ
2
i ≤ γ if and only if the system

of two linear matrix equations

〈A,X〉 = α and 〈B,X〉 = β

has a positive semidefinite solution X � 0 such that tr(X) ≤ γ.

5. Prove the following strengthening of Corollary 13.3. Let q1, q2 : Rn −→ R

be quadratic forms. Consider the map φ : Rn −→ R
2, φ(x) =

(
q1(x), q2(x)

)
. Then

the image φ(B) of the unit ball B =
{
x : ‖x‖ ≤ 1

}
is a compact convex set in R

2.

In general, as we will see shortly, the bound of Proposition 13.1 is the best

possible. However, there is one special case where it can be sharpened.

(13.4) Proposition. Let A ⊂ Symn be an affine subspace such that the intersec-
tion S+ ∩ A is non-empty and bounded. Suppose that codimA = (r + 2)(r + 1)/2
for some positive r > 0 and that n ≥ r + 2. Then there is a matrix X ∈ S+ ∩ A
such that rankX ≤ r.

Equivalently, for some r > 0, let us fix k = (r + 2)(r + 1)/2 symmetric n × n
matrices A1, . . . , Ak where n ≥ r + 2 and k real numbers α1, . . . , αk. If there is a
solution X � 0 to the system

〈Ai, X〉 = αi for i = 1, . . . , k
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and the set of all such solutions is bounded, then there is a matrix X0 � 0 such that

〈Ai, X0〉 = αi for i = 1, . . . , k

and, additionally
rankX0 ≤ r.

The proof requires some algebraic topology. Below, we explicitly state what we

need.

(13.5) Topological Fact. Let us consider the set RP
n−1 of all straight lines l

in R
n passing through the origin. We make RP

n−1 a metric space by letting the
distance d(l1, l2) between two lines be the angle between l1 and l2. Let S

n−1 ={
x : ‖x‖ = 1

}
be the unit sphere in R

n. Then, for n > 2 there is no continuous

map φ : Sn−1 −→ RP
n−1 such that φ(x) �= φ(y) for every pair of distinct points

x, y ∈ S
n−1.

The space RP
n−1 is called the projective space. It is an (n − 1)-dimensional

compact connected manifold without boundary. The fact follows from the observa-

tion that RPn−1 and S
n−1 are not homeomorphic for n > 2 and from the Invariance

of Domain Theorem which implies that such an embedding φ : Sn−1 −→ RP
n−1

would have been a homeomorphism (see, for example, Chapter III, Section 6 of

[Ma80]).

PROBLEM.

1. Construct a continuous map φ : S1 −→ RP
1 such that φ(x) �= φ(y) for every

pair of distinct points x, y ∈ S
1. That is, S1 and RP

1 are homeomorphic.

Proposition 13.4 will be deduced from the following special case.

(13.6) Lemma. Let r > 0 and let A ⊂ Symr+2 be an affine subspace such that
dimA = r + 2, i.e., codimA = (r + 2)(r + 1)/2. Suppose that the intersection
A ∩ S+ is non-empty and bounded. Then there is a matrix X ∈ S+ ∩ A such that
rankX ≤ r.

Proof. Suppose that A∩ intS+ = ∅. Problem 1 of Section 2.9 implies that A lies

in the support hyperplane of a proper face F of S+. By Proposition 12.3, the face

F can be identified with the cone of positive semidefinite matrices of a smaller rank

s < r + 2. Now the result follows from Proposition 13.1

Hence we may assume that A ∩ intS+ �= ∅. Let B = A ∩ S+. Then B is

an (r + 2)-dimensional convex compact set. We are going to prove that for some

matrix X0 ∈ ∂B one has rankX0 ≤ r. Let us suppose this is not so and obtain

a contradiction. For every X ∈ ∂B we must have rankX < r + 2 (cf. Problem

2 of Section 12.2). Assuming that rankX > r, we conclude that we must have

rankX = r + 1 for every X ∈ ∂B. Therefore, for every X ∈ ∂B, the set kerX
is a straight line passing through the origin in R

r+2. Let us construct a map

φ : Sr+1 −→ RP
r+1 as follows. We consider Sr+1 to be centered at a point o ∈ intB.
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For every y ∈ S
r+1, the ray [o, y) intersects ∂B at a single matrix X(y) (we use the

fact that B is compact and Lemma 2.2). Let φ(y) = kerX(y).

0

 y

X(y)

0

X(y)ker

Figure 25. The map φ

Note that φ is a continuous map. Since r > 0, by using (13.5), we conclude

that there must be two distinct points y, z ∈ S
r+1 such that φ(x) = φ(y). In other

words, there will be two distinct matrices Y and Z in ∂B such that kerY = kerZ.

Using Corollary 12.4, we conclude that Y and Z lie in the same face FL of S+,

where L ⊂ R
r+1 is a straight line. Hence, by Proposition 12.3 and Corollary 12.4,

the interior of FL consists of matrices of rank r+1. We draw the straight line (Y Z)

through Y and Z; see Figure 26.

Y
Z X

F

Figure 26

Since A is an affine subspace, (Y Z) ⊂ A. Since B is bounded, the line (Y Z)

intersects ∂F at some point X. We must have rankX ≤ r. Clearly, X ∈ A ∩ S+.

�

Now we are ready to prove Proposition 13.4.
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Proof of Proposition 13.4. By Proposition 13.1, there is a matrix Y ∈ A ∩ S+

such that rankY ≤ r + 1. Let us choose a linear subspace L ⊂ R
n such that

L ⊂ kerY and codimL = r + 2 and let FL be the corresponding face of S+ (see

Corollary 12.4). Hence Y ∈ FL and, therefore, FL ∩ A �= ∅. Since there is a rank-

preserving isometry between FL and the cone of positive semidefinite (r+2)×(r+2)

matrices, the proof follows by Lemma 13.6. �

PROBLEMS.

1. Show by examples that in Proposition 13.4 none of the conditions: S+ ∩ A
is bounded, r > 0 and n ≥ r + 2 can be dropped.

2◦. Let qk : Rn −→ R be quadratic forms with matrices Ak = (aij,k), k =

1, . . . ,m, so

qk(x) =
n∑

i,j=1

aij,kξiξj for x = (ξ1, . . . , ξn).

Let αk: k = 1, . . . ,m be real numbers. Suppose that the system of quadratic

equations qk(x) = αk for k = 1, . . . ,m has a solution x ∈ R
n. Prove that there

exists a positive semidefinite n × n matrix X such that 〈Ak, X〉 = αk for k =

1, . . . ,m and such that rankX ≤ 1.

3. Let A = (aij), B = (bij) and C = (cij) be n× n symmetric matrices, where

n ≥ 3, and let α, β and γ be real numbers. Suppose that the system of linear matrix

equations

〈A,X〉 = α, 〈B,X〉 = β and 〈C,X〉 = γ

has a positive semidefinite solution X � 0. Suppose further that for some numbers

τ1, τ2 and τ3 the linear combination τ1A+ τ2B + τ3C is (strictly) positive definite.

Prove that there exists a solution x ∈ R
n to the system of quadratic equations

q1(x) = α, q2(x) = β and q3(x) = γ,

where

q1(x) =
n∑

i,j=1

aijξiξj , q2(x) =
n∑

i,j=1

bijξiξj and q3(x) =
n∑

i,j=1

cijξiξj

for x = (ξ1, . . . , ξn)

are the corresponding quadratic forms.

The last problem requires some probability theory.

4. Let qk : Rn −→ R be quadratic forms with matrices Ak and let αk be real

numbers as in Problem 2 above. Suppose that there exists a positive semidefinite

matrix X such that 〈Ak, X〉 = αk for k = 1, . . . ,m. Let T be a matrix such that

TT ∗ = X and let us consider a probability distribution of a vector y in R
n such

that E (y) = 0 and E (y ⊗ y) = I, where I is the identity matrix. Let x = Ty, so
x is a random variable. Prove that E

(
qk(x)
)
= αk for k = 1, . . . ,m.
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Remark: Thus the existence of a positive semidefinite solution X to a system

of linear matrix equations 〈Ak, X〉 = αk can be interpreted as the existence of

a probability measure for the vector x of variables in the corresponding system

qk(x) = αk of quadratic equations, such that the expected value of every quadratic

form qk(x) is equal to the right-hand side αk. This observation gives rise to a

method of finding an approximate solution to the system of quadratic equations:

an appropriate probability measure in R
n is constructed and a vector x is sampled

at random. This is the idea of randomized rounding; see [MR95]. We develop this

method in Sections V.5-6.

14. Applications: Quadratic Convexity Theorems

In this section, we continue our study of hidden quadratic convexity results initi-

ated by Corollary 13.3. The following result was proved by L. Brickman [Br61].

Brickman’s original proof is sketched in Problem 6 below. We use Proposition 13.4

as our main tool.

(14.1) Theorem. Let n > 2 and let S
n−1 =

{
x ∈ R

n : ‖x‖ = 1
}

be the unit

sphere. Let q1, q2 : Rn −→ R be quadratic forms and let φ : Rn −→ R
2 be the

corresponding quadratic map, φ(x) =
(
q1(x), q2(x)

)
. Then the image φ(Sn−1) ⊂ R

2

is a convex set.

Proof. Let A = (aij) be the matrix of q1 and let B = (bij) be the matrix of q2, so

q1(x) =
n∑

i,j=1

aijξiξj and q2(x) =
n∑

i,j=1

bijξiξj for x = (ξ1, . . . , ξn).

Let B =
{
X � 0 : tr(X) = 1

}
. Clearly, B ⊂ Symn is a convex set. Let us define

a linear transformation ψ : Symn −→ R
2 by ψ(X) =

(
〈A,X〉, 〈B,X〉

)
. Clearly,

ψ(B) ⊂ R
2 is a convex set.

We claim that φ(Sn−1) = ψ(B). Indeed, if (α, β) ∈ φ(Sn−1), then there is a

vector x ∈ R
n such that q1(x) = α, q2(x) = β and ‖x‖ = 1. Let us define X = (xij)

by xij = ξiξj for i, j = 1, . . . , n. Then X ∈ B and ψ(X) = (α, β). Conversely, let

(α, β) ∈ ψ(B) be a point. Then there exists an X � 0 such that

(14.1.1) 〈A,X〉 = α, 〈B,X〉 = β and tr(X) = 1.

We observe that the set of solutions X � 0 to the system (14.1.1) of three linear

equations is non-empty and bounded (cf. Problem 4, Section 12.2). Applying

Proposition 13.4 with r = 1, we conclude that there is a matrix X0 � 0 satisfying

(14.1.1) and such that rankX0 ≤ 1. Such a matrix can be written in the form

X0 = (xij), xij = ξiξj for some vector x = (ξ1, . . . , ξn). We have ‖x‖ = tr(X0) = 1,

q1(x) = α and q2(x) = β. Hence (α, β) ∈ φ(Sn−1). �

PROBLEMS.

1◦. Show that Theorem 14.1 does not hold for n = 2.
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2. Show that for any n ≥ 1 one can find three quadratic forms q1, q2, q3 :

R
n −→ R such that if φ : Rn −→ R

3 is the corresponding quadratic map x �−→(
q1(x), q2(x), q3(x)

)
, then the image φ(Sn−1) ⊂ R

3 is not convex.

3. Deduce Corollary 13.3 from Theorem 14.1.

4. Deduce the result of Problem 5, Section 13.3 from Theorem 14.1.

5. Let q1, q2, q3 : Rn −→ R, n ≥ 3, be quadratic forms and let φ : Rn −→ R
3

be the corresponding quadratic map, φ(x) =
(
q1(x), q2(x), q3(x)

)
. Suppose that for

some numbers α1, α2 and α3, the form q = α1q1 +α2q2 +α3q3 is (strictly) positive

definite. Prove that the image φ(Rn) is a convex cone in R
3.

6. Find a different proof of Theorem 14.1 along the following lines. First, show

that it would suffice to prove Theorem 14.1 for n = 3. Next, observe that to prove

that φ(S2) is convex, it suffices to prove that the intersection of φ(S2) with every

straight line l ⊂ R
2, l =

{
(ξ, η) : αξ+βη = γ

}
, is connected. Now, let q = αq1+βq2

and prove that φ(S2)∩ l is the image of the set
{
x ∈ S

2 : q(x) = γ
}
, which consists

of at most two connected components (circles) symmetric about the origin.

�

�

l

0
R

S
2

2

Figure 27

Given an n × n complex matrix A = (aij), the set R(A) ⊂ C in the complex

plane

R(A) =
{ n∑
i,j=1

aijζiζj : |ζ1|2 + . . .+ |ζn|2 = 1
}

is called the numerical range of A. Results of O. Toeplitz (1918) and F. Hausdorff

(1919) establish convexity of the numerical range.

(14.2) Corollary (Toeplitz-Hausdorff Theorem). The numerical range of a
matrix is a convex set in the complex plane.

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



14. Applications: Quadratic Convexity Theorems 91

Proof. For n = 1 the numerical range is just a point a11 ∈ C. For n > 1, the set

of n-tuples (ζ1, . . . , ζn) of complex numbers ζk = ξk + iηk, k = 1, . . . , n, such that

|ζ1|2 + . . .+ |ζn|2 = 1 can be identified with the (2n− 1)-dimensional sphere

S
2n−1 =

{
(ξ1, η1, ξ2, η2, . . . , ξn, ηn) :

n∑
k=1

ξ2k +

n∑
k=1

η2k = 1
}
.

The proof now follows from Theorem 14.1 since the numerical range can be viewed

as the image of S2n−1 under a quadratic map φ : S2n−1 −→ R
2 = C. �

A theory parallel to that of Sections 12–13 for real symmetric matrices can be

developed for complex Hermitian matrices and even for quaternionic Hermitian ma-

trices. The corresponding results in the complex case are sketched in the problems

below.

PROBLEMS.

1◦. An n× n complex matrix A = (aij) is called Hermitian provided aij = aji
for all 1 ≤ i, j ≤ n. Prove that all n × n Hermitian matrices form a real vector

space Hern of dimension n2 with the scalar product 〈A,B〉 =∑n
i,j=1 aijbij . Prove

that 〈U∗AU,U∗BU〉 = 〈A,B〉 for any two Hermitian matrices A and B and any

unitary matrix U , where ∗ denotes the conjugate matrix.

2. A Hermitian matrix A = (aij) is called positive semidefinite provided∑n
i,j=1 aijζiζj ≥ 0 for all n-tuples z = (ζ1, . . . , ζn) of complex numbers. Let

H+ ⊂ Hern be the set of all positive semidefinite Hermitian n× n matrices. Prove

that H+ is a closed convex n2-dimensional cone with a compact base consisting of

positive semidefinite matrices of trace 1. Draw a picture of the base of the cone for

n = 2 (it is a 3-dimensional object).

3. Let A be an n × n positive semidefinite Hermitian matrix. Suppose that

rankA = r. Prove that A is an interior point of a face F of H+, where dimF = r2.
Prove that there is a rank-preserving isometry identifying face F with the cone

of positive semidefinite r × r Hermitian matrices. Prove that the faces of H+ are

parameterized by complex linear subspaces L ⊂ C
n:

FL =
{
A ∈ H+ : L ⊂ kerA

}
.

4. Let us fix a number r ≥ 0, a number k ≤ r2 + 2r and a number n ≥ r.
Let A1, . . . , Ak be n × n Hermitian matrices and let α1, . . . , αk be real numbers.

Suppose that there is a positive semidefinite solution X ∈ Hern to the system of

equations 〈Ai, X〉 = αi for i = 1, . . . , k. Prove that there is a positive semidefinite

solution X0 to the above system such that rankX0 ≤ r.

5. Let us fix a number r ≥ 1, let k = (r+1)2 and let n ≥ r+2. Let A1, . . . , Ak

be n×n Hermitian matrices and let α1, . . . , αk be real numbers. Suppose that there

is a positive semidefinite solution X ∈ Hern to the system of equations 〈Ai, X〉 = αi

for i = 1, . . . , k and that the set of all such solutions is bounded. Prove that there

is a positive semidefinite solution X0 to the above system such that rankX0 ≤ r.
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6. Let A = (aij), B = (bij) and C = (cij) be n×n complex Hermitian matrices,

where n ≥ 3 and let q1, q2, q3 : Cn −→ R be the corresponding Hermitian forms:

q1(z) =

n∑
i,j=1

aijζiζj , q2(z) =

n∑
i,j=1

bijζiζj and q3(z) =

n∑
i,j=1

cijζiζj

for z = (ζ1, . . . , ζn).

Let φ : Cn −→ R
3 be the map φ(z) =

(
q1(z), q2(z), q3(z)

)
and let

S
2n−1 =

{
(ζ1, . . . , ζn) :

n∑
i=1

|ζi|2 = 1
}

be the unit sphere. Prove that the image φ(S2n−1
)
is a convex set in R

3.

Finally, let us describe the convex hull of a general quadratic image of the

sphere. The following result was obtained by Y.H. Au-Yeung and Y.T. Poon

[AP79].

(14.3) Theorem. Let us fix a number r ≥ 1, a number k < (r + 2)(r + 1)/2
and a number n ≥ r + 2. Let q1, . . . , qk : Rn −→ R be quadratic forms and let
φ : Rn −→ R

k be the corresponding quadratic map, φ(x) =
(
q1(x), . . . , qk(x)

)
. Let

S
n−1 =

{
x ∈ R

n : ‖x‖ = 1
}
be the unit sphere. Then every point of conv

(
φ(Sn−1)

)
can be represented as a convex combination of r (not necessarily distinct) points
from φ(Sn−1).

Proof. The proof is parallel to that of Theorem 14.1. Let y = (η1, . . . , ηk) be a

point from the convex hull of φ(Sn−1). Hence we can write y = α1φ(x1) + . . . +
αmφ(xm) for some points x1, . . . , xm ∈ S

n−1 and some non-negative αi such that∑m
i=1 αi = 1. Let Ai be the matrix of qi for i = 1, . . . , k and let

X =

m∑
i=1

αi(xi ⊗ xi),

where x⊗ x is the matrix (ξiξj) for x = (ξ1, . . . , ξn). Then X � 0 and

(14.3.1) 〈Ai, X〉 = ηi for i = 1, . . . , k and tr(X) = 1.

Hence the set of all positive semidefinite matrices X satisfying (14.3.1) is non-empty

and bounded. Applying Proposition 13.4, we conclude that there exists a solution

X0 � 0 of (14.3.1) such that rankX0 ≤ r. Such a matrix X0 can be decomposed

as X0 =
∑r

i=1 βi(ui ⊗ ui), where ui ∈ S
n−1, βi are non-negative numbers for

i = 1, . . . , r and
∑r

i=1 βi = 1. It follows from (14.3.1) that

y =

r∑
i=1

βiφ(ui)

and the proof follows. �
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PROBLEMS.

1◦. Deduce Theorem 14.1 from Theorem 14.3.

2. Let A = (aij), B = (bij), C = (cij), D = (dij) and E = (eij) be n × n real

symmetric matrices. Consider the quadratic map φ : Cn −→ R
5, where

(ζ1, . . . , ζn) �−→
( n∑
i,j=1

aijζiζj ,
n∑

i,j=1

bijζiζj ,
n∑

i,j=1

cijζiζj ,
n∑

i,j=1

dijζiζj ,
n∑

i,j=1

eijζiζj

)
.

Let

S
2n−1 =

{
(ζ1, . . . , ζn) ∈ C

n :

n∑
k=1

|ζk|2 = 1
}

be the sphere. Prove that the image φ(S2n−1) is a convex set in R
5.

3. Let us fix a number r ≥ 1. Let Sn−1 ⊂ R
n be the unit sphere, n ≥ r+2. Let

us fix a Borel measure μ in S
n−1 such that μ(Sn−1) < ∞ and a subspace L in the

space of quadratic forms q : Rn −→ R such that dimL ≤ (r+1)(r+2)/2−1. Prove

that there exist r points x1, . . . , xr ∈ S
n−1 and r non-negative numbers λ1, . . . , λr

such that ∫

Sn−1

f dμ =

r∑
i=1

λif(xi) for any f ∈ L.

4◦. Let q1, . . . , qk : Rn −→ R be quadratic forms whose matrices are diagonal.

Let φ : Rn −→ R
k be the corresponding quadratic map. Prove that φ(Sn−1) is a

convex set in R
k.

5∗. Let us call a symmetric matrix A = (aij) r-diagonal if aij = 0 unless

|i − j| < r. Let q1, . . . , qk : R
n −→ R be quadratic forms whose matrices are

r-diagonal matrices and let φ : Rn −→ R
k be the corresponding quadratic map,

φ(x) =
(
q1(x), . . . , qk(x)

)
. Let B =

{
x ∈ R

n : ‖x‖ ≤ 1
}
be the unit ball in R

n.

Prove that every point from conv
(
φ(B)
)
is a convex combination of some r points

from φ(B).

Hint: Cf. Problem 3 of Section IV.10.3.

6∗. In Problem 5 above, is it true that every point from conv
(
φ(Sn−1)

)
is a

convex combination of some r points from φ(Sn−1) if n is sufficiently large?

7. Let q1, . . . , qk : C
n −→ R be Hermitian forms whose matrices are real

and 2-diagonal. Let φ : Cn −→ R
k be the corresponding quadratic map and let

B =
{
(ζ1, . . . , ζn) :

∑n
i=1 |ζi|2 ≤ 1

}
be the unit ball in C

n. Deduce from Problem

4 that the image φ(B) is a convex set in R
k.

8∗. Prove the following result of S. Friedland and R. Loewy [FL76], which

is essentially equivalent to Proposition 13.4: suppose that 2 ≤ r ≤ n − 1. Let

L ⊂ Symn be a subspace in the space of symmetric matrices such that dimL ≥
(r− 1)(2n− r+ 2)/2. Then L contains a non-zero matrix whose largest eigenvalue

is at least of multiplicity r.

9∗. Prove the following result of F. Bohnenblust (see [FL76]), which is es-

sentially equivalent to Proposition 13.4. Suppose that r > 0 and that n ≥ r + 2.
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Let L be a subspace in the space of quadratic forms q : R
n −→ R such that

dimL < (r + 2)(r + 1)/2 − 1. Suppose that the following condition is satisfied:

whenever for some vectors x1, . . . , xr ∈ R
n one has

r∑
i=1

q(xi) = 0 for all q ∈ L,

one must have xi = 0 for i = 1, . . . , r. Then L contains a positive definite form.

15. Applications: Problems of Graph Realizability

We discuss further applications of our results regarding linear equations in positive

semidefinite matrices. They allow us to visualize the rank restrictions of Proposi-

tions 13.1 and 13.4.

Once again, we review some linear algebra first.

(15.1) Some linear algebra: Gram matrices. Let v1, . . . , vn be vectors in R
d.

Let us define an n × n matrix X = (xij) by xij = 〈vi, vj〉 (we consider the usual

scalar product in R
d). Matrix X is called the Gram matrix of vectors v1, . . . , vn.

It is known that X is positive semidefinite and that rankX ≤ d; in fact, rankX
is the dimension of span(v1, . . . , vn). Conversely, if X is a positive definite matrix

such that rankX ≤ d, then X is the Gram matrix of some n vectors v1, . . . , vn in

R
d: xij = 〈vi, vj〉.

Now we state the problem.

(15.2) The graph realization problem. Suppose we are given an (undirected)

weighted graph G = (V,E; ρ), where V = {v1, . . . , vn} is the set of vertices, E
is the set of edges and ρ : E −→ R+ is a function, which assigns to every edge

(i, j) ∈ E a non-negative number (“length”) ρij . We say that G is d-realizable if

one can place the vertices v1, . . . , vn in R
d in such a way that ‖vi − vj‖ = ρij for

every edge (i, j) ∈ E. We say that G is realizable if it is d-realizable for some d. The
most intuitive case is 3-realizability: some problems of robotics (“linkages”) and

computational chemistry (“molecules”) lead to problems of 3-realizability of certain

graphs; see [CH88]. Questions of d-realizability for the smallest possible d turn

out to be relevant to problems in statistics, archaeology, genetics and geography.

We will consider this problem again in Section V.6.

PROBLEMS.

Some classical problems of the field:

1∗ (The “cycloheptane problem”). Prove that one can place seven points

v1, . . . , v7 in R
3 in such a way that ‖v1−v2‖ = ‖v2−v3‖ = . . . = ‖v6−v7‖ = ‖v7−

v1‖ = 1 and ‖v1−v3‖ = ‖v2−v4‖ = . . . = ‖v5−v7‖ = ‖v1−v6‖ = ‖v2−v7‖ =
√
8/3.

Remark: The constants 1 and
√
8/3 are chosen in such a way that the angles

between consecutive intervals vi−1, vi and vi, vi+1 are equal to arccos
(
−1/3
)
, that

is, to the angle between two intervals connecting vertices of a regular tetrahedron

with its center; see Figure 28.
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2∗. Prove that every such configuration of seven points in R
3 has one degree

of freedom (modulo rigid motions).

Remark: Apparently, it is very difficult to prove that, modulo rigid motions,

there are exactly two connected components in the configuration space.

3∗ (The “cyclohexane problem”). Prove that one can place six points v1, . . . , v6
in R

3 in such a way that ‖v1 − v2‖ = ‖v2 − v3‖ = . . . = ‖v5 − v6‖ = ‖v6 − v1‖ = 1

and ‖v1 − v3‖ = ‖v2 − v4‖ = . . . = ‖v4 − v6‖ = ‖v1 − v5‖ = ‖v2 − v6‖ =
√
8/3.

4∗. Prove that there are two such configurations of six points, one of which has

one degree of freedom (modulo rigid motions) and the other is rigid.

5∗. Consider the X set of all configurations of five points v1, . . . , v5 in R
2 such

that ‖v1 − v2‖ = ‖v2 − v3‖ = ‖v3 − v4‖ = ‖v4 − v5‖ = ‖v5 − v1‖ = 1. Thus

X can be viewed as a subset of
(
R

2
)5

= R
10. We observe that if x ∈ X and g

is an orientation-preserving isometry of R2, then g(x) ∈ X. Let Y be the factor

space of X modulo all orientation-preserving isometries of R2. Prove that Y is a

2-dimensional manifold homeomorphic to the sphere with four handles.

An easy problem.

6◦. Prove that if a weighted graph with n vertices is realizable, it is (n − 1)-

realizable.

Let us relate the problem of graph realizability to linear equations in positive

semidefinite matrices.
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(15.3) A straightforward reformulation. Let v1, . . . , vn be a realization of the

graph in R
d, and let X = (xij), xij = 〈vi, vj〉 be the Gram matrix of v1, . . . , vn.

Then X � 0 and for any edge e = (i, j) of G, we have

ρ2ij = ‖vi − vj‖2 = 〈vi, vi〉 − 2〈vi, vj〉+ 〈vj , vj〉 = xii − 2xij + xjj .

Hence we conclude that the problem of realizability of G is equivalent to the fol-

lowing problem:

Is there an n× n matrix X = (xij) such that X � 0 and

xii − 2xij + xjj = ρ2ij

for every edge (i, j) ∈ E?

The problem of d-realizability is equivalent to the above problem with one

additional constraint:

rankX ≤ d.

It turns out that if d is large enough, realizability is equivalent to d-realizability.

(15.4) Proposition. Suppose that the number k of edges of G satisfies the in-
equality k < (d+ 2)(d+ 1)/2. Then G is d-realizable if and only if it is realizable.
In particular, if k ≤ 9, the graph is realizable if and only if it is 3-realizable.

Proof. By Proposition 13.1, if the system of linear matrix equations

xii − 2xij + xjj = ρ2ij : (i, j) ∈ E

has a positive semidefinite solution X = (xij), it has a positive semidefinite solution

X0, such that additionally, rankX0 ≤ d. �

PROBLEMS.

1. Let G be the complete graph with d+2 vertices (and (d+2)(d+1)/2 edges)

such that the length of every edge (vi, vj) is 1. Prove that G is realizable but not

d-realizable.

Figure 29. The complete graph with five vertices. If every edge is to

have the unit length, the graph is 4-realizable but not 3-realizable.
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2. Suppose that G is a cycle v1 − v2 − . . .− vn − v1 with some weights on the

edges. Prove that G is realizable if and only if it is 2-realizable.

3∗. Suppose that G has n vertices v1, . . . , vn and 2n edges: (v1, v2), (v2, v3), . . . ,
(vn−1, vn), (vn, v1) and (v1, v3), (v2, v4), . . . , (vn−2, vn), (vn−1, v1), (vn, v2) with

some weights on the edges. Is it true that if G is realizable, it is 4-realizable?

4∗ (M. Bakonyi and C.R. Johnson). A graph G = (V,E) is called chordal
provided for any cycle v1 − v2 − . . .− vk − v1, where k ≥ 4, there is a chord vi − vj ,
where 1 ≤ i < j ≤ k. A subset K ⊂ V is called a clique if every two vertices

from K are connected by an edge. Prove that G is chordal if and only if it has the

following property:

for any choice of weights on the edges, the graph is realizable provided every

clique is realizable.

Remark: See Section 31.4 of [DL97].

5. Suppose that we want to place six points v1, . . . , v6 in R
d with prescribed

distances ‖v1 − v2‖, ‖v2 − v3‖, ‖v3 − v4‖, ‖v4 − v5‖, ‖v5 − v6‖ and ‖v6 − v1‖ and

prescribed angles between the pairs of opposite edges: (v1, v2) and (v4, v5), (v2, v3)
and (v5, v6) and (v3, v4) and (v6, v1); see Figure 30.

v

v1

v
2

v
3
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v
5

6

prescribed  length

prescribed  angle

Figure 30

Prove that if such a placement exists for some d, it exists for d = 3.

Problem 1 of Section 15.4 shows that the bounds of Proposition 15.4 (and

hence the bounds of Proposition 13.1) are the best possible. It turns out, however,

that the graph of Problem 1 is the only graph with (d + 2)(d + 1)/2 edges which
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is realizable, but not d-realizable. To see that, we need to refine our reduction

of the realizability question to systems of linear equations in positive semidefinite

matrices.

(15.5) The economical reformulation. Let v1, . . . , vn be a realization of the

graph G = (V,E) with n vertices in R
d. We can always assume that vn = 0. Let

X = (xij) be the (n− 1)× (n− 1) Gram matrix of the vectors v1, . . . , vn−1. Then

X � 0 and we have the following affine constraints:

xii = ρ2in if (i, n) is an edge and

xii − 2xij + xjj = ρ2ij if (i, j) is an edge and 1 ≤ i, j ≤ n− 1.

(15.5.1)

Hence we conclude that the problem of realizability of G is equivalent to the fol-

lowing problem:

is there an (n− 1)× (n− 1) matrix X = (xij) such that X � 0 and X satisfies

(15.5.1)?

The problem of d-realizability is equivalent to the above problem with one

additional constraint:

rankX ≤ d.

(15.6) Proposition. Suppose that G has k = (d+2)(d+1)/2 edges and that G is
not a union of a complete graph with d+2 vertices and 0 or more isolated vertices.
Then G is d-realizable if and only if it is realizable.

Proof. SinceG is d-realizable if and only if its connected components are realizable,

without loss of generality we may assume that G is connected. Since G is not a

complete graph, we must have n ≥ d + 3, and so n − 1 ≥ d + 2. Now we use

Proposition 13.4. We claim that the set of positive semidefinite solutions X to

the system 15.5.1 is bounded. Indeed, since G is connected, each vertex vi can be

connected to vn by a path. Since vn is fixed at 0, the length of ‖vi‖ =
√
xii is

bounded by the length of the path. In particular,
√
xii is bounded by the sum of

all ρij . Therefore, the set of feasible matrices X � 0 is bounded (cf. Section 12.2).

Hence the proof follows by Proposition 13.4. �

PROBLEMS.

1. Let G be a graph with n ≥ d+2 vertices consisting of a complete graph with

d+ 2 vertices and n− d− 2 isolated vertices. Let us assign length 1 to every edge.

Prove that G is realizable, but not d-realizable. Letting n = d+2, deduce that the

condition n ≥ d + 2 in Proposition 13.4 cannot be dropped. Letting n > d + 2,

deduce that the condition of boundedness in Proposition 13.4 cannot be dropped

either.

2. Given a graph G = (V,E) with |V | = n vertices and k = |E| edges and

a number d, let us consider the following rigidity map φG : Rnd −→ R
k. A point

x from R
nd = R

d × . . . × R
d is interpreted as an n-tuple of d vectors (v1, . . . , vn)
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and φ(x) is the k-tuple of squared distances ‖vi − vj‖2, where (i, j) runs over all

edges of G. Let S
nd−1 be the unit sphere in R

nd. Prove that if n ≥ d + 3 and

k < (d+ 2)(d+ 1)/2, then the image φ(Snd−1) is a convex set in R
k.

3. In Problem 5 of Section 15.4, suppose we want to place v1, . . . , v6 so that

additionally we have
∑6

i=1 ‖vi‖2 = 1. Prove that such a placement exists if and

only if it exists for d = 3.

16. Closed Convex Sets

We conclude the chapter by discussing some general structural properties of closed

convex sets in R
d.

Let us define a ray as a set R of points of the type

R =
{
v + τu : τ ≥ 0

}
,

where v and u are given points in R
d and u �= 0. We say that R emanates from

v in the direction of u. In Section 8, we define rays as emanating from the origin

only. Our current extended definition should not lead to confusion since the starting

point of any ray under consideration will be clear from the context.

We show that if a closed convex set contains a ray, the ray “replicates” itself

all over the set. Our proof works equally well for infinite-dimensional spaces.

(16.1) Lemma. Let A ⊂ R
d be a closed convex set which contains a ray. Then

there exists a closed convex cone K ⊂ R
d, called the recession cone of A, such that

for every point a ∈ A, the union of all rays that emanate from a and are contained
in A is the translation a+K.

Proof. Without loss of generality, we assume that 0 ∈ A. First, we prove that the

union K of all rays that emanate from 0 and are contained in A, if non-empty, is a

closed convex cone in R
d. Indeed, suppose that R1 and R2 are two rays emanating

from 0 and contained in A. Let us choose a point x ∈ R1 and a point y ∈ R2.

Hence τx ∈ R1 ⊂ A and τy ∈ R2 ⊂ A for all τ ≥ 0. Let z = αx + βy for some

α, β ≥ 0. If z = 0, then obviously z ∈ K. If z �= 0, then let γ = α + β > 0 and

for any τ ≥ 0 we have that τz = α(τx) + β(τy) = (αγ−1)(γτx) + (βγ−1)(γτy) is a
convex combination of points from A. Hence τz ∈ A and the ray emanating from

the origin in the direction of z is contained in A. Hence K is a convex cone (we did

not use yet that A is closed).

Let us prove that K is closed, or, equivalently, that the complement Rd \K is

open. Let u ∈ R
d \ K be a point. The ray in the direction of u is not contained

in A and hence there is a point w = τu for some τ > 0 such that w /∈ A. Since A
is closed, there is a neighborhood W of w such that W ∩ A = ∅. Then no point x
in the neighborhood U = τ−1W of u belongs to the cone K. Thus we have proven

that K is a closed convex cone.

Now we show that if for some a ∈ A the ray emanating from a in some direction

u is contained in A, then for any point b ∈ A, the ray emanating from b in the same

direction u is also contained in A. As before, without loss of generality, we may

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



100 II. Faces and Extreme Points

assume that a = 0. Hence τu ∈ A for all τ ≥ 0. Let us choose a τ ≥ 0 and an

0 < ε < 1. Then (ε−1τ )u ∈ A and since A is convex, the point

(1− ε)b+ τu = (1− ε)b+ ε
(
ε−1τu

)

is contained in A. Since A is closed, we conclude that b+ τu ∈ A, which completes

the proof. �

A

a + K K
0a

Figure 31. A set A and its recession cone K

If the set A ⊂ R
d does not contain rays, we say that its recession cone is {0}.

PROBLEMS.

1◦. Let A ⊂ R
d be a closed convex set which contains a straight line. Prove

that there exists a subspace L ⊂ R
d such that for every point a ∈ A, the union of

all straight lines passing through a and contained in A is the affine subspace a+L.

2◦. Let A ⊂ R
d be a closed convex set and let a ∈ A be a point. Let us define

the set K of feasible directions from a by K =
{
u ∈ R

d : a + εu ∈ A for some

ε > 0
}
. Prove that K is a convex cone. Does K have to be closed?

3◦. Let
P =
{
x ∈ R

d : 〈ci, x〉 ≤ βi for i = 1, . . . ,m
}

be a polyhedron.

Prove that the recession cone K of P is defined by

K =
{
x ∈ R

d : 〈ci, x〉 ≤ 0, i = 1, . . . ,m
}
.

Assuming that 0 ∈ A, prove the union of all straight lines that pass through 0 and

are contained in A, if non-empty, is the subspace

L =
{
x ∈ R

d : 〈ci, x〉 = 0, i = 1, . . . ,m
}
.
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4. Construct an example of a convex (but not closed) set A ⊂ R
2 and two

points a, b ∈ A such that A contains a ray emanating from a in some direction u
but does not contain the ray emanating from b in the same direction u.

5. Let P ⊂ R
d be a polyhedron, P =

{
x : 〈ci, x〉 ≤ βi, i = 1, . . . ,m

}
for some

vectors ci and numbers βi. Let v ∈ P be a point and let I = {i : 〈ai, v〉 = βi} be

the set of inequalities active on v. Prove that the cone K of feasible directions from

v (see Problem 2) is defined by K =
{
u : 〈ai, u〉 ≤ 0 for i ∈ I

}
.

6. Let A ⊂ R
d be a closed convex set which does not contain rays. Prove that

A is compact.

Now we prove that straight lines can be “factored out” from a closed convex

set in Euclidean space.

(16.2) Lemma. Let A ⊂ R
d be a closed convex set containing straight lines. Then

there exists a subspace L ⊂ R
d such that for the orthogonal projection A′ of A onto

the orthogonal complement L⊥ of L we have:
1. A′ is a closed convex set which does not contain straight lines;
2. A = A′ + L.

Proof. Let us define L as the subspace of Rd such that for every point a ∈ A,

the union of all straight lines passing through a and contained in A is a + L; see
Problem 1 of Section 16.1. Let pr : Rd −→ L⊥ be the orthogonal projection onto

L⊥ so that A′ = pr(A). Thus for every x ∈ A′ we have pr−1(x) = x+ L ⊂ A.

A

0

L

A

pr

,

Figure 32
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102 II. Faces and Extreme Points

Clearly, A′ is a convex set and A = A′ + L. Moreover, A′ does not contain

straight lines for if l ⊂ A′ is a straight line, then l + L ⊂ A is an affine subspace

whose dimension is greater than that of L, which contradicts the definition of L.
Finally, A′ is closed, for if {xn} is a sequence in A′ converging to a point x, then
for any u ∈ L, yn = xn + u is a sequence of points in A converging to x+ u. Since
A is closed, we have x+ u ∈ A and hence x ∈ A′. �

Last, a useful lemma.

(16.3) Lemma. Let A ⊂ R
d be a closed convex set which does not contain straight

lines. Then every point x ∈ A can be written in the form x = y + z, where y is a
convex combination of extreme points of A and z is a point from the recession cone
K of A.

Proof. We proceed by induction on d. The result is clear for d = 1. Suppose that

d > 1. Without loss of generality we may assume that A has a non-empty interior

(otherwise, we reduce the dimension by considering A in its affine hull). Let us

choose a straight line L passing through x. The intersection L∩A is either a closed

ray a+τu, τ ≥ 0, with the endpoint a ∈ ∂A or a closed interval [a, b] with a, b ∈ ∂A
(possibly with a = b).

A
x

Fa

L

F
G

A

xa

b

Figure 33

In the first case, let us choose a proper face F of A containing a (see Corollary

2.8). Hence dimF < d and by the induction hypothesis we can write a = y + z′,
where y is a convex combination of extreme points of F and z′ is in the recession

cone of F . Since x = a + τu, we get x = y + (z′ + τu). Now we observe that

y is a convex combination of extreme points of A (Problem 1 of Section 3.2) and

z = z′ + τu is in the recession cone of A.

In the second case, we choose proper faces F containing a and G containing b.
As above, we can write a = y′ + z′, where y′ is a convex combination of extreme

points of F and z′ is in the recession cone of A and b = y′′ + z′′, where y′′ is a

convex combination of extreme points of G and z′′ is in the recession cone of A.

Since x is a convex combination of a and b, the proof follows. �
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17. Remarks

Our general reference for convexity in Euclidean space is [W94]. The Isolation

Theorem (Theorem 1.6) is an algebraic form of the Hahn-Banach Theorem; see

[Bou87] and [Ru91]. The author learned the proof of Theorem 1.6 from A.M.

Vershik. Although topology seems to be completely “evicted” from our proof, it

is present under cover. Indeed, if we declare a subset A of a vector space V open

if it is a union of convex algebraically open sets, we make V a topological vec-

tor space with the convenient property that every linear functional f : V −→ R

is continuous. Algebraically open and closed sets were used earlier by V. Klee

[Kl63] to define the Euler characteristic in the abstract setting of a real vector

space. The Birkhoff Polytope, the permutation polytopes, transportation polyhe-

dra and many related polytopes (polyhedra) are discussed in detail in [YKK84]

and [BS96]. The polytope of polystochastic matrices, also called the multiindex

transportation polytope (see Problem 3 of Section 7.4) is one possible generaliza-

tion of the Birkhoff Polytope. A.M. Vershik proposed a different generalization: one

can think of the Birkhoff polytope as the convex hull of the matrices representing

the action of the symmetric group Sn in R
n by permutations of the coordinates.

Similarly, for any representation of the symmetric group (and any finite group for

that matter), one can define a polytope that is the convex hull of the operators of

the representation; see [Barv92]. For the Diet Problem, the Assignment Problem

and the Transportation Problem (also called Min-Cost Problem), see [PS98]. For

the Schur-Horn Theorem and many related topics consult [MO79]. The moment

cone and the cone of univariate non-negative polynomials are thoroughly treated

in [KS66]. The facial structure of the cone of positive semidefinite matrices is

described, for example, in [DL97]. Our presentation of quadratic convexity re-

sults is based on some original papers: [Br61], [AP79], [Da71], [Ve84], [FL76],

[Barv95], [Barv01] and [DL97]. The approach to “hidden convexity” based on

supplanting the image of a (non-convex) set under a (non-linear) map by the image

of a convex set under a linear map was demonstrated first in [Li66] and in the

context of quadratic convexity in [Da71]. The problem of graph realizability is

also known as the Euclidean matrix completion problem; see [DL97] for references

and results. For problems of distance geometry related to graph realizability and

their applications see [CH88] and [H95].
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Chapter III

Convex Sets in

Topological Vector

Spaces

We extend our methods to study convex sets in topological vector spaces. We

prove the Krein-Milman Theorem for locally convex topological vector spaces and

explore the extreme points of some convex sets which can be considered as infinite-

dimensional extensions of familiar Euclidean objects. In particular, we consider

an L∞-analogue of a polyhedron and a “simplex” of probability measures. Ap-

plications include problems of optimal control and probability and some “hidden

convexity” results based on Lyapunov’s Theorem. Our approach is geometric and,

whenever possible, we stress similarities between finite- and infinite-dimensional sit-

uations. Exercises address some of the peculiar features of the infinite dimension:

existence of dense hyperplanes, discontinuous linear functionals and disjoint convex

sets that cannot be separated by a hyperplane.

1. Separation Theorems in Euclidean Space and Beyond

In this section, while being mostly in the Euclidean setting, we develop some general

techniques that also work in infinite-dimensional situations. We prove separation

theorems in R
d and discuss how they can be extended to general vector spaces.

Later in this chapter, separation theorems will become our main tool to handle

infinite-dimensional convex sets.

Let V be a vector space. Recall (see Definition II.1.4) that sets A,B ⊂ V are

separated by a hyperplane H if A and B belong to different closed halfspaces H+

and H−. Equivalently, the sets A and B are separated by a hyperplane if there

105
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106 III. Convex Sets in Topological Vector Spaces

exists a non-zero linear functional f : V −→ R and a number α such that f(x) ≤ α
for each x ∈ A and f(x) ≥ α for each x ∈ B. Sets A,B ⊂ V are strictly separated

by a hyperplane H if A and B belong to different open halfspaces H+ and H−.
Equivalently, the sets A and B are strictly separated by a hyperplane if there exists

a non-zero linear functional f : V −→ R and a number α such that f(x) < α for

all x ∈ A and f(x) > α for all x ∈ B.

a )

b )

A

B

H

A

B

H

Figure 34. Example: a) A and B separated by H, b) A and B strictly

separated by H

(1.1) Definition. Let V be a vector space and let A,B ⊂ V be sets. We define

the set A−B ⊂ V by

A−B =
{
x− y : x ∈ A, y ∈ B

}
.

PROBLEM.

1◦. Prove that if sets A and B are convex, then A− B is convex as well.

Our first result is a corollary of Theorem II.2.9.

(1.2) Theorem. Let A and B be non-empty convex sets in R
d such that A∩B = ∅.

Then there exists an affine hyperplane H which separates A and B.
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1. Separation Theorems in Euclidean Space and Beyond 107

Proof. Let C = A − B. By Problem 1 of Section 1.1 the set C is convex. Since

A∩B = ∅, we have 0 /∈ C. Therefore, by Theorem II.2.9, there exists a hyperplane

H such that 0 ∈ H and H isolates C. In other words, there exists a non-zero linear

functional f : Rd −→ R, such that f(x − y) ≤ 0 for all x ∈ A, y ∈ B. We have

f(x) ≤ f(y) for each x ∈ A and each y ∈ B. Therefore, there exists an α ∈ R,

such that f(x) ≤ α for all x ∈ A and f(y) ≥ α for all y ∈ B (we can choose

α = sup
{
f(x) : x ∈ A

}
, for example). The hyperplane H =

{
x ∈ R

d : f(x) = α
}

separates A and B. �

PROBLEMS.

1◦. Suppose that one of the sets A,B ⊂ R
d is open. Prove that C = A− B is

open.

2. Construct an example of two closed sets A,B ⊂ R
2 such that C = A−B is

not closed.

3. Let A,B ⊂ R
d be sets. Suppose that A is closed and B is compact. Prove

that the set C = A−B is closed.

4. Prove that if A,B ⊂ R
d are compact sets, then C = A−B is a compact set.

5◦. Let A,B ⊂ R
d be open sets. Suppose that a hyperplane H separates A

and B. Prove that H strictly separates A and B.

The following result as well as its infinite-dimensional version (Theorem 3.4)

will be used extensively.

(1.3) Theorem. Let A ⊂ R
d be a closed convex set and let u /∈ A be a point. Then

there exists an affine hyperplane H which strictly separates A and u.

Proof. Since A is a closed set and u /∈ A, there exists a ρ > 0 such that the open

ball B(u, ρ) =
{
x : ‖x− u‖ < ρ

}
does not intersect A. Let

B = B(0, ρ/2) =
{
x : ‖x‖ < ρ/2

}
.

We claim that A+B and u+B are open non-intersecting convex sets. Indeed,

A+ B =
⋃
x∈A

B(x, ρ/2)

is a union of open sets, so it is open. Similarly, u+ B = B(u, ρ/2) is an open ball

centered at u. It follows by Problem 4, Section I.1.5, that A + B and u + B are

convex. Suppose that (A+ B) ∩ (B + u) �= ∅. For a point x ∈ (A+ B) ∩ (B + u),
we have ‖y− x‖ < ρ/2 for some y ∈ A and ‖u− x‖ < ρ/2. Therefore, ‖u− y‖ < ρ,
which is a contradiction. Therefore, the sets A+B and B + u do not intersect.

By Theorem 1.2, there is a hyperplane H that separates A + B and u + B.

Since the sets A + B and u + B are open, H must strictly separate the sets (see

Problem 5, Section 1.2). �
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PROBLEMS.

1. Construct an example of two disjoint non-empty closed convex sets A and

B in R
2 that cannot be strictly separated by a hyperplane.

2. Let A ⊂ R
d be a non-empty closed convex set and let u /∈ A be a point.

Prove that there exists a unique point v ∈ A such that ‖u − v‖ ≤ ‖u − x‖ for all

x ∈ A. Furthermore, prove that the hyperplane H orthogonal to u− v and passing

through the point (u+ v)/2 strictly separates A and u.

3. Using Problem 3, Section 1.2, prove that if A,B ⊂ R
d are disjoint non-

empty convex sets, where A is closed and B is compact, then A and B can be

strictly separated by a hyperplane H.

4. Let A,B ⊂ R
d be disjoint non-empty convex sets. Suppose that B is

compact and A is closed. Prove that there is a pair of points u ∈ A and v ∈ B such

that ‖u − v‖ ≤ ‖x − y‖ for all x ∈ A and all y ∈ B. Furthermore, prove that the

hyperplane H orthogonal to u− v and passing through (u+ v)/2 strictly separates

A and B.

(1.4) What can go wrong in infinite dimension?

While Theorem 1.3 can be generalized to a wide class of inifinite-dimensional

spaces, Theorem 1.2 apparently lacks such a generalization.

PROBLEM.

1. Let V = R∞ be the vector space of all infinite sequences x = (ξ1, ξ2, ξ3, . . . )
of real numbers such that all but finitely many terms ξi are zero (see Problem 2,

Section II.1.6). Let A ⊂ V \ {0} be the set of all such sequences x whose last non-

zero term is strictly positive and let B = −A be the set of sequences whose last

non-zero term is strictly negative. Prove that A and B are convex, that A∩B = ∅
and that A and B cannot be separated by a hyperplane.

The ultimate reason why a straightforward extension of Theorem 1.2 fails in

infinite dimension is that infinite-dimensional convex sets can be amazingly “shal-

low”: they can have an empty interior and yet not be contained in any hyperplane

(see Problem 1 of Section II.2.5).

If we require at least one set to be algebraically open (see Definition II.1.5), we

can extend the separation theorem to an arbitrary vector space.

(1.5) Theorem. Let V be a vector space and let A,B ⊂ V be non-empty convex
sets such that A∩B = ∅. Suppose that A is algebraically open. Then A and B can
be separated by an affine hyperplane.

Proof. Let C = A−B. We can write C as a union of algebraically open sets:

C =
⋃
b∈B

(A− b).

Thus C is an algebraically open convex set. Furthermore, 0 /∈ C, so by Theorem

II.1.6 there exists a hyperplane H such that 0 ∈ H and H isolates C. The proof is

completed as in Theorem 1.2. �
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(1.6) Definition. Let V be a vector space and let A ⊂ V be a convex set. We

say that v ∈ A lies in the algebraic interior of A if for any straight line l passing
through v the point v lies in the interior of the intersection A ∩ l. The set of all

points v that lie in the algebraic interior of A is called the algebraic interior of A.

PROBLEM.

1. Let V be a vector space and let A ⊂ V be a convex set. Let u0 be a point

in the algebraic interior of A. Prove that for any point u1 ∈ A and any 0 ≤ α < 1,

the point uα = (1− α)u0 + αu1 lies in the algebraic interior of A.

Hint: Cf. Lemma II.2.2.

2. Prove that the algebraic interior of a convex set is an algebraically open

convex set.

Hint: Use Problem 1.

3. Let V be a vector space, let A,B ⊂ V be convex sets and let H ⊂ V be

a hyperplane. Suppose that H separates B and the algebraic interior of A. Prove

that H separates A and B.

Hint: Use Problem 1.

4. Let A ⊂ R∞ be the set of Problem 1 of Section 1.4. Prove that the algebraic

interior of A is empty.

Lastly, we conclude that two non-intersecting convex sets can be separated by

a hyperplane if one of them is sufficiently “solid”.

(1.7) Corollary. Let V be a vector space and let A,B ⊂ V be non-empty convex
sets such that A∩B = ∅. Suppose that A has a non-empty algebraic interior. Then
A and B can be separated by an affine hyperplane.

Proof. Let A1 be the algebraic interior of A. Then, by Problem 2, Section 1.6, A1

is a non-empty algebraically open convex set. By Theorem 1.5, there is a hyperplane

H which separates A1 and B. Then, by Problem 3, Section 1.6, H separates A and

B. �

2. Topological Vector Spaces, Convex Sets and

Hyperplanes

We intend to study convex sets in a richer setting of topological vector spaces.

In this section, we introduce topological vector spaces and review with or without

proofs some basic facts concerning them (see [Ru91] and [Co90]). We review some

topology first.

(2.1) Topological spaces. We recall that a topological space is a set X together

with a family F ⊂ 2X of its subsets, called open sets, such that

• ∅ and X are open sets;
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• the intersection of any two (equivalently, of finitely many) open sets is an

open set;

• the union of open sets is an open set.

The family F is called a topology on X. An open subset containing a point

x ∈ X is called a neighborhood of that point. A set C ⊂ X is called closed if X \C
is open. A map φ : X −→ Y , where X and Y are topological spaces, is called

continuous if for any open set U ⊂ Y the preimage φ−1(U) =
{
x ∈ X : φ(x) ∈ U

}
is an open set in X. Equivalently, φ is continuous if for every x ∈ X and for every

neighborhood U of φ(x) in Y there exists a neighborhood W of x such that for each

x′ ∈ W we have φ(x′) ∈ U . If F1, F2 ⊂ 2X are two topologies on X, we say that F2

is stronger (F1 is weaker) if F1 ⊂ F2. We recall that a set C ⊂ X is called compact
if for any family of open subsets

{
Ui ⊂ X, i ∈ I

}
such that C ⊂ ⋃i∈I Ui there is a

finite subfamily Ui1 , . . . , Uin such that C ⊂ Ui1 ∪ . . . ∪ Uin .

We recall the construction of the direct product. Let X and Y be topological

spaces. The direct product Z = X×Y is made a topological space by declaring a set

U ⊂ Z open if it can be represented as a union of direct products U1×U2, where U1 is

an open subset ofX and U2 is an open subset of Y . Equivalently, this topology is the

weakest among all topologies that make the projections Z −→ X, (x, y) �−→ x and

Z −→ Y , (x, y) �−→ y continuous. Similarly, if
{
Xi : i ∈ I

}
is a (possibly infinite)

family of topological spaces, the direct product Z =
∏

i∈I Xi is identified with the

space of all functions f on the set of indices I such that f(i) ∈ Xi for all i ∈ I. The
topology of the direct product is the weakest topology on Z for which all projections

Z −→ Xi are continuous. Equivalently, we declare a set open if and only if it is a

union of basic open sets U of the type U =
{
f ∈ Z : f(i1) ∈ Ui1 , . . . , f(in) ∈ Uin

}
,

where i1, . . . , in ∈ I and Ui1 ⊂ Xi1 , . . . , Uin ⊂ Xin are open sets. Tikhonov’s

Theorem asserts that if each Xi is compact, then Z is compact; cf. [Ru91] and

[Co90].

Next, we introduce the central notion of this chapter.

(2.2) Topological vector spaces. Let V be a vector space. Suppose that V is

also a topological space so that the following properties hold:

• For every vector v ∈ V the set {v} is closed.

• The map V ×V −→ V , (x, y) �−→ x+y is continuous. Equivalently, for every

w1, w2 ∈ V and every neighborhood U of u = w1 +w2, there is a neighborhood W1

of w1 and a neighborhood W2 of w2 such that W1 +W2 ⊂ U .

• The map R×V −→ V , (α, x) �−→ αx is continuous. Equivalently, for every w
in V and every α ∈ R, for every neighborhood U of u = αw, there is a neighborhood

W of w and a number ε > 0 such that βx ∈ U provided x ∈ W and |α− β| < ε.

Then V is called a topological vector space.
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In particular, for any given u ∈ V , the translation x �−→ u+ x is a continuous

transformation, and for any given α ∈ R, the scaling x �−→ αx is a continuous

transformation.

PROBLEMS.

1. Let V be a topological vector space and let x ∈ V be a vector. Prove that if

U ⊂ V is an open (closed) set, then the translation U + x is an open (closed) set.

2. Let V be a topological vector space and let α �= 0 be a number. Prove that

if U ⊂ V is an open (closed) set, then αU =
{
αx : x ∈ U

}
is an open (closed) set

in V .

3. Let V be a topological vector space and let w1 �= w2 be two distinct points

in V . Prove that there exist neighborhoods W1 of w1 and W2 of w2 such that

W1 ∩W2 = ∅. Deduce that compact sets in V are closed.

4∗. Let V be a topological vector space and let L ⊂ V be a finite-dimensional

affine subspace. Prove that L is a closed subset of V .

5. A set A ⊂ V in a vector space V is called balanced provided αA ⊂ A for all

α such that |α| ≤ 1. Prove that every neighborhood of the origin in a topological

vector space contains a balanced neighborhood of the origin.

(2.3) Definitions. Let V be a topological vector space, A ⊂ V be a set and u ∈ V
be a point. We say that u lies in the interior of A provided there is a neighborhood

U ⊂ A of u. We say that u lies in the closure of A provided for every neighborhood

U of u we have U ∩ A �= ∅. The set of all points in the interior of A is denoted

int(A). The set of all points in the closure of A is denoted cl(A).

The following result is very similar to Lemma II.2.2.

(2.4) Lemma. Let V be a topological vector space and let A ⊂ V be a convex set.
Let u0 ∈ int(A) and u1 ∈ A. Then, for every 0 ≤ α < 1 and uα = (1−α)u0 +αu1,
we have uα ∈ int(A).

Proof. Let U0 ⊂ A be a neighborhood of u0. Let us consider a map T : V −→ V ,

x �−→ 1

1− α
(x− u1) + u1.

Then T is continuous and T (uα) = u0 (see Figure 12). Therefore, the preimage

Uα = T−1(U0) is a neighborhood of uα. Let us show that Uα ⊂ A. Indeed, if

x ∈ Uα, then T (x) = y ∈ A. Solving for x, we get x = (1 − α)y + αu1. Since A is

convex, the result follows. �

(2.5) Theorem. Let V be a topological vector space and let A ⊂ V be a convex
set. Then int(A) and cl(A) are convex sets.

Proof. The proof that int(A) is a convex set follows the proof of Corollary II.2.3.

Let us prove that cl(A) is a convex set. Let u0, u1 ∈ cl(A) and let uα = αu0 +

(1− α)u1 for 0 < α < 1. We know that every neighborhood of u0 or u1 intersects
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A and we must prove that every neighborhood of uα intersects A. Let U be a

neighborhood of uα; see Figure 35.

A

u u u
U U U

x yz

0
0

� 1
1

Figure 35

Since the operation (x, y) �−→ αx + (1 − α)y is continuous, there must be

neighborhoods U0 of u0 and U1 of u1 such that αx+(1−α)y ∈ U for every x ∈ U0

and every y ∈ U1. Since u0 ∈ cl(A), there is a point x ∈ U0∩A and since u1 ∈ cl(A),

there is a point y ∈ U1∩A. Since A is convex, for z = αx+(1−α)y we have z ∈ A.

Therefore, U ∩A �= ∅. �

PROBLEMS.

1◦. Prove that int(A + x) = int(A) + x and cl(A + x) = cl(A) + x for each

A ⊂ V and each x ∈ V .

2◦. Prove that int(αA) = α int(A) and cl(αA) = α cl(A) for each A ⊂ V and

each α �= 0.

Among other counter-intuitive things that can happen in infinite dimension,

hyperplanes may be everywhere dense.

(2.6) Theorem. Let V be a topological vector space and let H ⊂ V be an affine
hyperplane. Then either cl(H) = H (that is, H is closed) or cl(H) = V (that is, H
is dense in V ).
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Proof. It suffices to prove the result assuming that 0 ∈ H. Let f : V −→ R be a

linear functional such that

H =
{
x ∈ V : f(x) = 0

}
.

Suppose thatH is not closed. Then there is a point u ∈ cl(H)\H. Let α = f(u) �= 0.

Let us choose any w ∈ V . Suppose that β = f(w). Let γ = β/α and let h = w−γu.
Then f(h) = f(w) − γf(u) = 0, so h ∈ H. In other words, w = h + γu. Since

multiplication and addition are continuous operations, for every neighborhood W
of w, there is a neighborhood U of u, such that h+γU ⊂ W . Since u ∈ cl(H), there

must be a point h1 ∈ U ∩H. Then the point h+ γh1 lies in W . Hence W ∩H �= ∅
and w ∈ cl(H). It follows that H is dense in V . �

PROBLEMS.

1. Consider the space C[0, 1] of all continuous functions on the interval [0, 1].
Prove that we can make C[0, 1] a topological vector space by declaring a set U ⊂
C[0, 1] open if for every f ∈ U there is an ε > 0 such that the set

U(f, ε) =
{
g ∈ C[0, 1] : |f(τ )− g(τ )| < ε for all τ ∈ [0, 1]

}

is contained in U .

Let L ⊂ C[0, 1] be a subspace consisting of all smooth functions (a function is

called smooth if it is differentiable at every point and the derivative is continuous).

Prove that L has infinite codimension and that cl(L) = C[0, 1].

2∗. Using Zorn’s Lemma and Problem 1, show that there exists a dense hyper-

plane in C[0, 1].

3. Prove that every hyperplane in R
d is closed.

4. Consider the space V of all continuous functions on the interval [0, 1]. Prove
that we can make V a topological vector space by declaring a set U ⊂ V open if

for every f ∈ U there is an ε > 0 such that the set

U(f, ε) =
{
g ∈ V :

∫ 1

0

√
|f(τ )− g(τ )| dτ < ε

}

is contained in U . Prove that all hyperplanes H ⊂ V are dense in V .

5. Let V be the space of all smooth functions (functions with continuous

derivative) on the interval [0, 1]. Prove that we can make V a topological vector

space by declaring a set U ⊂ V open if for every f ∈ U there is an ε > 0 such that

the set

U(f, ε) =
{
g ∈ V : |f(τ )− g(τ )| < ε for all τ ∈ [0, 1]

}

is contained in U (cf. Problem 1). Let H =
{
f : f ′(1/2) = 0

}
. Prove that H is a

dense hyperplane in V .

6. Let V be a topological vector space and let L ⊂ V be an (affine) subspace.

Prove that cl(L) is an (affine) subspace.

Closed hyperplanes correspond to continuous linear functionals, as the following

result shows.

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



114 III. Convex Sets in Topological Vector Spaces

(2.7) Theorem. Let V be a topological vector space, let f : V −→ R be a non-
zero linear functional and let α ∈ R be a number. Then the affine hyperplane
H(α) =

{
x ∈ V : f(x) = α

}
is closed if and only if f is continuous.

Proof. If f is continuous, then H(α) = f−1(α) is a closed set as the preimage of

a closed set {α}.
Let us prove that if H(α) is closed, then f is continuous. Since all the hyper-

planes

H(γ) =
{
x : f(x) = γ

}

are translations of each other, it follows that all H(γ) are closed. The core of the

argument is to prove that both halfspaces

H+(γ) =
{
x : f(x) > γ

}
and H−(γ) =

{
x : f(x) < γ

}

are open. Since all the halfspaces H−(γ) are translations of each other and all the

halfspaces H+(γ) are translations of each other, it suffices to prove that for some

γ both H+(γ) and H−(γ) are open.

Suppose, for example, that H+(γ) is not open. Then there is a point u ∈ H+(γ)
such that every neighborhood of u intersects

H−(γ) =
{
x : f(x) ≤ γ

}
.

Thus f(u) > γ, but each neighborhood U of u contains a point x such that f(x) ≤ γ.

Applying a translation, if necessary, we may assume that u = 0 is the origin (of

course, the translation may change γ). Let us choose any neighborhood U of u = 0.

Since 0 ·0 = 0 and multiplication by a scalar is continuous, there is a neighborhood

W of the origin and a number 0 < δ < 1 such that τx ∈ U for any |τ | < δ and

any x ∈ W . Let U1 =
⋃

0<τ<δ

τW . Then U1 ⊂ U is a neighborhood of u = 0 and

[u, x] ⊂ U1 for any x ∈ U1 (cf. Problem 5 of Section 2.2 and Figure 36). Thus U1

is a neighborhood of u and hence U1 must intersect H−(γ). We claim that, in fact,

U1 must intersect the hyperplane H(γ). Indeed, let us choose an x ∈ U1 ∩H−(γ).
If x ∈ H(γ), then U1 intersects H(γ) as claimed. If x ∈ H−(γ), then f(x) < γ.
Since f(u) > γ and f is linear, for some y ∈ [u, x] we have f(y) = γ and hence the

interval [u, x] intersects H. Since [u, x] ⊂ U1, we conclude that U1 intersects H.

Since U1 ⊂ U , we conclude that every neighborhood U of u intersects H(γ), which
contradicts the assumption that H(γ) is closed. Therefore, both H+(γ) and H−(γ)
are open.

Let us choose an x ∈ V and let γ = f(x). Given an ε > 0, let

U = f−1(γ − ε, γ + ε) = H+(γ − ε) ∩H−(γ + ε).

Then U is a neighborhood of x and for every y ∈ U we have |f(y) − f(x)| < ε.
Hence f is continuous. �
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U

x

U

0

1

Figure 36. Any neighborhood U of the origin contains a neighborhood

U1 with the property that [0, x] ⊂ U1 for all x ∈ U1.

The set of all continuous linear functionals on a given topological vector space

can itself be made a topological vector space.

(2.8) The Dual Space. Let V be a topological vector space. The dual space

V ∗, as a vector space, consists of all continuous linear functionals f : V −→ R

with addition: g = f1 + f2 provided g(x) = f1(x) + f2(x) for all x ∈ V and scalar

multiplication: g = αf provided g(x) = αf(x) for all x ∈ V . There is a remarkable

topology, called weak∗ (pronounced “weak star”) topology, on V ∗. Open sets in V ∗

are unions of elementary open sets of the type

U(x1, . . . , xn;α1, . . . , αn;β1, . . . , βn)

=
{
f ∈ V ∗ : αi < f(xi) < βi for i = 1, . . . , n

}
,

where x1, . . . , xn ∈ V and α1, β1, . . . , αn, βn ∈ R.

PROBLEMS.

1. Prove that for any x ∈ V the function φx : V ∗ −→ R, φ(f) = f(x) is a

continuous linear functional on V ∗.

2∗. Prove that every continuous linear functional φ : V ∗ −→ R has the form

φ(f) = f(x) for some x ∈ V .

Hint: See Section IV.4 and Theorem IV.4.2.

3. Prove that for any two distinct points f, g ∈ V ∗, there is a continuous linear

functional φ : V ∗ −→ R, such that φ(f) �= φ(g).
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4. Suppose that V ∗ is infinite-dimensional. Prove that every non-empty open

set in V ∗ contains an infinite-dimensional affine subspace.

We are going to use the following important fact.

(2.9) Alaoglu’s Theorem. Let V be a topological vector space, let U ⊂ V be a
neighborhood of the origin and let V ∗ be the dual space endowed with the weak∗

topology. The set

U◦ =
{
f ∈ V ∗ : |f(x)| ≤ 1 for all x ∈ U

}

is compact in V ∗.

Sketch of Proof. For every x ∈ U , let Ix = [−1, 1] be a copy of the interval [−1, 1]
indexed by x. Let

C =
∏
x∈U

Ix

be the direct product identified with the set of all functions φ : U −→ [−1, 1]. We

introduce the topology of the direct product on C in the standard way; see Section

2.1. Then, by the Tikhonov Theorem, C is compact. Now we identify U◦ with a

subset of continuous linear functionals of C and prove that U◦ is a closed subset of

C. Hence U◦ is compact. �

We conclude this section with a useful lemma, which is a straightforward gen-

eralization of Lemma II.8.6.

(2.10) Lemma. Let V be a topological vector space and let C ⊂ V be a compact
convex set such that 0 /∈ C. Then K = co(C) is a closed convex cone.

Proof. The proof is completely analogous to that of Lemma II.8.6. Clearly, K is

a convex cone such that every point x ∈ K can be represented in the form x = λu
for some u ∈ C and some λ ≥ 0. Let us prove that K is closed.

Let us choose a point u /∈ K. Our goal is to find a neighborhood U of u such

that U ∩K = ∅. Since C is closed and 0 /∈ C, there is a neighborhood W of the

origin such that W ∩ C = ∅. Let us choose a neighborhood U1 of u and a number

δ > 0 such that αU1 ⊂ W for all |α| < δ (such U1 and δ exist because scalar

multiplication is a continuous operation). In particular, αU1∩C = ∅ for all |α| < δ.
Therefore, for all λ > δ−1 we have U1 ∩ λC = ∅ (see Figure 37).

Let X = [0, δ−1]×C and let φ : X −→ V be the map φ(τ, x) = τx. Since C and

X are compact and φ is continuous, the image φ(X) is compact in V . Therefore,

φ(X) is a closed subset of V (cf. Problem 3 of Section 2.2). Since u /∈ K, we have

u /∈ φ(X) and there is a neighborhood U2 of u with the property that U2∩φ(X) = ∅.
Then U = U1 ∩ U2 is the desired neighborhood of u. �
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Figure 37. For large λ we have U1 ∩ λC = ∅ and for small λ we have

U2 ∩ λC = ∅.

3. Separation Theorems in Topological Vector Spaces

In this section, we adapt separation theorems in Euclidean space (Section 1) to the

infinite-dimensional situation.

(3.1) Lemma. Let V be a topological vector space and let A ⊂ V be an open set.
Then A is an algebraically open set.

Proof. Let L =
{
u+ τv : τ ∈ R

}
be a straight line in V (v �= 0). We must prove

that the intersection A ∩ L is an open set in L, possibly empty. If A ∩ L is not

empty, let w ∈ A ∩ L, w = u + τ0v. Since A is open, there is a neighborhood W
of w, such that W ⊂ A. Since addition and scalar multiplication are continuous

operations, there exists an ε > 0, such that if |τ − τ0| < ε, then u+ τv ∈ W . This

implies that w is an interior point of the intersection A ∩ L. Therefore, A is an

algebraically open set. �

PROBLEMS.

1. Let V = R∞ be a vector space of all infinite sequences of real numbers

x = (ξ1, ξ2, ξ3, . . . ), such that only finitely many terms ξi are non-zero (see Problem

1 of Section 1.4 and Problem 2, Section II.1.6). Prove that we can make V a

topological vector space by declaring a set U ⊂ V open if for every x ∈ U there is
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an ε > 0 such that the set

U(x, ε) =
{
y = (η1, η2, . . . ) :

∞∑
i=1

|ξi − ηi|2 < ε
}

is contained in U . Let A =
{
x ∈ V : |ξk| < 1/k for k = 1, . . .

}
. Prove that A is

convex and algebraically open, but not open.

2. Let V be a vector space. Let us declare a set A ⊂ V open if and only if

it is a union of algebraically open convex sets. Prove that this converts V into a

topological vector space (cf. Problem 6 of Section II.1.5).

3. Let V be a topological vector space of Problem 2. Prove that every hyper-

plane in V is closed.

4. Let V be a topological vector space and let A,B ⊂ V be non-empty open

sets. Suppose that a hyperplane H ⊂ V separates A and B. Prove that H strictly

separates A and B and that H is closed.

(3.2) Theorem. Let V be a topological vector space and let A,B ⊂ V be convex
sets. Suppose that A ∩ B = ∅ and that int(A) �= ∅. Then there is a closed affine
hyperplane H ⊂ V which separates A and B. Equivalently, there is a continuous,
not identically zero, linear functional f : V −→ R such that f(x) ≤ f(y) for all
x ∈ A and y ∈ B.

Proof. By Lemma 3.1, the algebraic interior of A is not empty. Therefore, by

Corollary 1.7, there is a hyperplane H ⊂ V which separates A and B. By Theorem

2.6, either H is closed or H is dense in V . In the latter case, H must have a

non-empty intersection with any open subset, in particular, with the interior of A.

Therefore, H has a non-empty intersection with the algebraic interior of A.

A

A

H

L

x

Figure 38

If x ∈ H ∩ A is a point in the algebraic interior of A, then we can choose a

straight line L passing through x and not contained in H. The intersection L ∩A
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contains an open interval around x and hence H cannot isolate A and thus cannot

separate A and B. The contradiction shows that H must be a closed hyperplane.

By Theorem 2.7, the corresponding linear functional f is continuous. �

We define an important class of topological vector spaces with the abundance of

continuous linear functionals (there are topological vector spaces with no non-zero

continuous linear functionals; cf. Problem 4 of Section 2.6).

(3.3) Definition. A topological vector space V is called locally convex provided for

every point u ∈ V and every neighborhood U of u there is a convex neighborhood

W ⊂ U of u.

PROBLEMS.

1. Let V be a vector space. A function p : V −→ R is called a norm provided

• p(u) ≥ 0 for each u ∈ V and p(u) = 0 only if u = 0,

• p(αu) = |α| · p(u) for each u ∈ V and each α ∈ R,

• p(u+ v) ≤ p(u) + p(v) for each u ∈ V and each v ∈ V .

Let us make V a topological vector space by declaring a set U ⊂ V open if for

every u ∈ U there is an ε > 0 such that the set

U(u, ε) =
{
v ∈ V : p(u− v) < ε

}

is contained in U . Prove that V is a locally convex topological vector space. Such

a space V is called a normed space.

2. Let V be a topological vector space and let A ⊂ V be an open set. Prove

that conv(A) is an open set.

3. Let V be a vector space. Prove that the strongest topology that makes V a

locally convex topological vector space is the topology where a set U ⊂ V is open if

and only if it is a union of convex algebraically open sets. Prove that every linear

functional f : V −→ R is continuous in this topology.

4. Let V be the topological vector space of Problem 4, Section 2.6. Prove that

the only open convex sets in V are the empty set and the whole space V .

Now we can generalize Theorem 1.3.

(3.4) Theorem. Let V be a locally convex topological vector space. Let A ⊂ V be
a closed convex set and let u /∈ A be a point. Then there exists a closed hyperplane
H that strictly separates A and u. Equivalently, there exists a continuous linear
functional f : V −→ R such that f(x) < f(u) for all x ∈ A.

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



120 III. Convex Sets in Topological Vector Spaces

Proof. Since A is closed, the complement U = V \ A is a neighborhood of u. Let
U0 = U − u be a translation of U , so U0 is a neighborhood of the origin. Because

the transformation (x, y) �−→ x− y is continuous, there are neighborhoods W1 and

W2 of the origin, such that x− y ∈ U0 for each x ∈ W1 and each y ∈ W2. Since V
is locally convex, we can choose W1 and W2 to be convex.

Let us consider A+W2 and u+W1. The sets are convex (see Problem 4, Section

I.1.5) and open, since A+W2 =
⋃
x∈A

(W2+x) is a union of open sets. Furthermore,

(A+W2) ∩ (u+W1) = ∅.

A

A + W

u

u + W

H2

1

Figure 39

Indeed, if (A+W2)∩ (u+W1) �= ∅, then for points a ∈ A, y ∈ W2 and x ∈ W1,

we will have a + y = u + x, that is a = u + (x − y). Since x − y ∈ U0, this would

imply that A and U intersect, which is a contradiction. Theorem 3.2 implies that

there is a closed hyperplane that separates A+W2 and u+W1. Since A+W1 and

u+W1 are open, the hyperplane H must strictly separate A+W1 and u+W1 (see

Problem 4 of Section 3.1). �

PROBLEMS.

1◦. Prove that in a locally convex topological vector space V , any two points

x �= y can be strictly separated by a closed hyperplane.

2. Let V be a locally convex topological vector space and let A,B ⊂ V be

convex sets such that A is closed, B is compact and A ∩B = ∅. Prove that A and

B can be separated by a closed hyperplane.
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Hint: It suffices to construct convex neighborhoods W1 and W2 of the origin,

such that (A + W1) ∩ (B + W2) = ∅ and then use Theorem 3.2. For every point

x ∈ B, construct convex neighborhoods W1(x) and W2(x) of the origin, such that

(A + W1(x)) ∩ (x + W2(x)) = ∅. Since B is compact, there is a finite set of

points x1, . . . , xn ∈ B, such that the sets xi +W2(xi), i = 1, . . . , n, cover B. Let

W1 =

n⋂
i=1

W1(x) and W2 =

n⋂
i=1

W2(x).

4. The Krein-Milman Theorem for Topological Vector

Spaces

Our next goal is to extend Theorem II.3.3 to the infinite-dimensional situation.

The Krein-Milman Theorem that we prove below allows us to relate topological

(compactness) and geometric (convexity, extreme points) properties. For the rest

of the chapter, we will be studying the extreme points of some particular infinite-

dimensional compact convex sets.

(4.1) The Krein-Milman Theorem. Let V be a locally convex topological vector
space and let K ⊂ V be a compact convex set. Then K is the closure of the convex

hull of the set of its extreme points, K = cl
(
conv
(
ex(K)

))
.

Proof. First, we establish that every non-empty compact set K in V has an ex-

treme point. Let us call a non-empty compact convex subset A ⊂ K extreme
provided for any two points x, y ∈ K and z = (x+ y)/2, whenever z ∈ A, we must

have x, y ∈ A. Clearly, K is an extreme set. Let X ⊂ K be the smallest extreme

subset (that is, not containing any extreme subset of K other than itself). The ex-

istence of X is established via Zorn’s Lemma or the axiom of choice. Let us prove

that X is a point. Suppose that X contains two different points, say x1 and x2.

Let us choose a closed hyperplane H that strictly separates x1 and x2; see Theorem

3.4. In other words, there is a continuous linear functional f : V −→ R such that

f(x1) < f(x2). Let α = min
{
f(y) : y ∈ X

}
. Since X is compact (a closed subset

of a compact set) the minimum is attained. Let Y =
{
x ∈ X : f(x) = α

}
be a

face of X. Clearly, Y is a compact convex subset of K and Y is an extreme set (cf.

Theorem II.3.2). On the other hand, Y does not contain x2, so Y is strictly smaller

than X. The contradiction shows that X must be a point, that is, an extreme

point.

Now, we prove that K is the closure of the convex hull of the set of its extreme

points. Let A = cl
(
conv
(
ex(K)

))
. Then A is a closed convex subset of K.

Suppose that there is a point u ∈ K \ A. Let us choose a closed hyperplane

H that strictly separates u from A (Theorem 3.4). In other words, there is a

continuous linear functional f : V −→ R such that f(x) > f(u) for any x ∈ A. Let

α = min
{
f(x) : x ∈ K

}
(the minimum is attained since f is continuous and K is

compact) and let F =
{
x ∈ K : f(x) = α

}
be the corresponding face of K. So, F

is a compact convex set and, as we proved, must contain an extreme point v, which
will be an extreme point of K (cf. Theorem II.3.2). On the other hand, v /∈ A,

which is a contradiction; see Figure 40. �
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A

K
H

F

u v

Figure 40

PROBLEMS.

1. Let C[0, 1] be the vector space of all continuous functions on the interval

[0, 1]. Let B =
{
f : |f(τ )| ≤ 1 for all τ ∈ [0, 1]

}
. Find the extreme points of B.

2. Let A be the following subset of C[0, 1]:

A =
{
f ∈ C[0, 1] :

∫ 1

0

f(τ ) dτ = 0 and |f(τ )| ≤ 1 for all τ ∈ [0, 1]
}
.

Let us make C[0, 1] a topological vector space as in Problem 1, Section 2.6. Check

that C[0, 1] is locally convex. Prove that A is a closed convex set which does

not contain straight lines and that A has no extreme points. Thus there is no

straightforward infinite-dimensional generalization of Lemma II.3.5.

3. Let V be a topological vector space and let A be a convex set such that

int(A) �= ∅. Prove that for each point u ∈ ∂A, there is a closed support hyperplane

at u, that is, a closed hyperplane H that contains u and isolates A.

4. Let A ⊂ V be a convex set in a vector space V and let F be a face of

A. Prove that F is an extreme set of A, that is, for any two x, y ∈ A, whenever

z = (x+ y)/2 ∈ F , we must have x, y ∈ F .

5. Let V be the topological vector space of Problem 5, Section 2.6. Let

A =
{
f : f ′(1/2) > 0

}
and B =

{
f : f ′(1/2) < 0

}

be subsets of V .

Prove that A and B are disjoint convex, algebraically open subsets of V , so

there is an affine hyperplane H ⊂ V strictly separating them. Prove that A and B
are dense in V . Deduce that there is no closed hyperplane H ⊂ L strictly separating

A and B.

We obtain an infinite-dimensional counterpart of Corollary II.3.4.
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(4.2) Corollary. Let V be a locally convex topological vector space and let K ⊂ V
be a compact convex set. Let f : V −→ R be a continuous linear functional. Then
there exists an extreme point u of K such that f(u) ≥ f(x) for all x ∈ K.

Proof. Since f is continuous and K is compact, f attains its maximum value α
on K. Let F =

{
x ∈ K : f(x) = α

}
be the corresponding face of K. Hence F is

a compact convex set and by the Krein-Milman Theorem (Theorem 4.1), F has an

extreme point u. Then by Theorem II.3.2 (Part 2), u is an extreme point of K. We

have α = f(u) ≥ f(x) for all x ∈ K. �

5. Polyhedra in L∞

In this section, we study some infinite-dimensional convex sets which may be viewed

as analogues of polyhedra. First, we describe the ambient space.

(5.1) Spaces L1 and L∞. Let L1[0, 1] be the vector space of all integrable func-

tions on the interval [0, 1], that is, Lebesgue measurable functions f such that

∫ 1

0

|f(τ )| dτ < +∞.

As usual, we do not distinguish between functions that differ on a set of measure

0. We make L1[0, 1] a topological vector space by declaring a set U ⊂ L1[0, 1] open
if for every f ∈ U there is an ε > 0 such that the set

U(f, ε) =
{
g ∈ L1[0, 1] :

∫ 1

0

|f(τ )− g(τ )|dτ < ε
}

is contained in U .

Let L∞[0, 1] be the vector space of all Lebesgue measurable functions f on the

interval [0, 1] such that |f(τ )| ≤ C for some constant C and for almost all (that

is, for all except a set of zero measure) τ ∈ [0, 1]. As usual, we do not distinguish

between functions that differ on a set of measure 0.

It is known that every continuous linear functional φ : L1[0, 1] −→ R has the

form

φ(f) =

∫ 1

0

f(τ )g(τ ) dτ

for some g ∈ L∞[0, 1]; see, for example, Appendix B of [Co90]. This allows us to

view L∞[0, 1] as the dual space to L1[0, 1] and introduce the weak∗ topology on

L∞; see Section 2.8. Thus a set U ⊂ L∞[0, 1] is open if and only if it is a union of

some basic open sets

U(g1, . . . , gn;α1, . . . , αn;β1, . . . , βn)

=
{
f ∈ L∞[0, 1] : αi <

∫ 1

0

gi(τ )f(τ ) dτ < βi for i = 1, . . . , n
}
,

where g1, . . . , gn ∈ L1[0, 1] are functions and α1, . . . , αn and β1, . . . , βn are num-

bers.
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PROBLEM.

1. Check that L1[0, 1] is a locally convex topological vector space.

(5.2) Proposition. Let B ⊂ L∞[0, 1] be the set

B =
{
u ∈ L∞[0, 1] : 0 ≤ u(τ ) ≤ 1 for almost all τ ∈ [0, 1]

}
.

The set B is compact in the weak∗ topology.

PROBLEMS.

1. Prove that if u is an extreme point of B, then u(τ ) ∈ {0, 1} for almost all

u ∈ [0, 1].

2. Deduce Proposition 5.2 from Theorem 2.9.

Hint: Consider a neighborhood U of the origin in L1[0, 1]:

U =
{
g ∈ L1[0, 1] :

∫ 1

0

|g(τ )| dτ < 1
}
.

Let

K =
{
f ∈ L∞[0, 1] :

∫ 1

0

(fg) dτ ≤ 1 for all g ∈ U
}
.

Prove that K consists of the functions f ∈ L∞[0, 1] such that |f(τ )| ≤ 1 for almost

all τ ∈ [0, 1]. Use Theorem 2.9 to show that K is compact. Show that B ⊂ K is a

closed subset.

3. Prove that conv
(
ex(B)

)
is not closed.

4. Deduce from Proposition 5.2 that the set

K =
{
f ∈ L∞[0, 1] : |f(τ )| ≤ 1 for almost all τ ∈ [0, 1]

}

is weak∗ compact.

Next, we introduce sets which may be considered as an L∞ version of poly-

hedra (Problem 1 of Section 5.3 explains the relationship of our sets to polyhedra

in Euclidean space). The sets are defined by finitely many linear equations and

infinitely many inequalities in L∞[0, 1].

(5.3) Proposition. Let us fix m functions f1(τ ), . . . , fm(τ ) ∈ L1[0, 1] and m
numbers β1, . . . , βm ∈ R. Let B ⊂ L∞[0, 1] be the set

B =
{
u ∈ L∞[0, 1] : 0 ≤ u(τ ) ≤ 1 for almost all τ ∈ [0, 1]

}
,

and let

A =
{
u ∈ B :

∫ 1

0

fi(τ )u(τ ) dτ = βi for i = 1, . . . ,m
}
.

Then A is a convex weak∗ compact subset of L∞[0, 1]. If u is an extreme point of
A, then u(τ ) ∈ {0, 1} for almost all τ .

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



5. Polyhedra in L∞ 125

Proof. It is obvious that A is convex. Furthermore, A is a closed subset of B and

so A is compact as follows from Proposition 5.2.

Let u be an extreme point of A. Suppose that the set
{
τ : u(τ ) /∈ {0, 1}

}
has

a positive measure. Then for some δ > 0 and X =
{
τ : δ ≤ |u(τ )| ≤ 1 − δ

}
, the

measure of X is positive. Let us find m+1 pairwise disjoint subsets X1, . . . , Xm+1

of X of positive measure and let [Xi] be the indicator function of Xi:

[Xi](τ ) =

{
1 if τ ∈ Xi,

0 if τ /∈ Xi.

Let ε1, . . . , εm+1 be real numbers (to be specified later) and let

v = ε1[X1] + . . .+ εm+1[Xm+1].

Furthermore, let u+ = u+v and let u− = u−v. Then u = (u++u−)/2. Obviously,

if |ε1| < δ, . . . , |εm| < δ, we will have 0 ≤ u+(τ ), u−(τ ) ≤ 1 for almost all τ .

0

1

1 0 1

u u u+ -

v

Figure 41. Decomposing u = (u+ + u−)/2

Now we show that we can choose a non-zero v so that u+, u− ∈ A. It suffices

to choose ε1, . . . , εm+1 so that the system of m homogeneous equations

m+1∑
j=1

εj

∫ 1

0

fi(τ )[Xj](τ ) dτ = 0, i = 1, . . . ,m,

in m+ 1 variables ε1, . . . , εm+1 is satisfied. Since the number of variables exceeds

the number of equations, there must be a solution ε1, . . . , εm+1, where not all ε’s
are zero. Scaling, if necessary, we make |ε1|, . . . , |εm+1| < δ. Then u−, u+ ∈ A.

That contradicts the assumption that u is an extreme point of A. �
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PROBLEMS.

1. Consider the following “discretization” of Proposition 5.3. Let us choose N
points 0 ≤ τ1 < . . . < τN ≤ 1 in the interval [0, 1] and let fi(τj), i = 1, . . . ,m,

j = 1, . . . , N , be real numbers. Consider the set

A =
{(

u(τ1), . . . , u(τN )
)
: 0 ≤ u(τj) ≤ 1 for j = 1, . . . , N and

N∑
j=1

fi(τj)u(τj) = βi for i = 1, . . . ,m
}

as a polyhedron in R
N . Suppose that u =

(
u(τ1), . . . , u(τN )

)
is an extreme point

of A. Prove that at least N −m of the numbers u(τ1), . . . , u(τN ) are either 0 or 1.

2. This is an extension of Proposition 5.3.

Let us consider the space L∞([0, 1],Rd) of all Lebesgue measurable bounded

vector-valued functions f : [0, 1] −→ R
d and the space L1([0, 1],Rd) of all Lebesgue

integrable vector-valued functions f : [0, 1] −→ R
d. Let us fix a bounded polyhe-

dron (polytope) P ⊂ R
d, m functions f1, . . . , fm ∈ L1([0, 1],Rd) and m numbers

β1, . . . , βm. Let

A =

{
u ∈L∞([0, 1],Rd) :

u(τ ) ∈ P for almost all τ and
∫ 1

0

〈fi(τ ), u(τ )〉 dτ = βi for i = 1, . . . ,m

}
.

Prove that A is a convex set and that if u is an extreme point of A, then u(τ ) is a
vertex of P for almost all τ .

6. An Application: Problems of Linear Optimal Control

In this section, we show that a problem of optimal control can be considered as

a problem of optimizing a linear functional over an L∞-polyhedron. This is an

example of an infinite-dimensional linear program; cf. II.4.4. We will go back to

this problem again in Section IV.12.

We review some differential equations first.

(6.1) Solving linear systems of differential equations with control. Let

A(τ ) and B(τ ) be n× n matrices, where τ ∈ [0, 1] is a real parameter. We assume

that A(τ ) and B(τ ) are smooth functions of τ and consider a system of linear

differential equations

(6.1.1)
d

dτ
x(τ ) = A(τ )x(τ ) +B(τ )u(τ ),

where x(τ ) =
(
x1(τ ), . . . , xn(τ )

)
and u(τ ) =

(
u1(τ ), . . . , un(τ )

)
are vectors from

R
n. The function x(τ ) is a solution of the system (6.1.1), whereas u(τ ) is a control.
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If the control is chosen, under mild assumptions the solution x is determined by

the initial condition:
x(0) = x0,

where x0 ∈ R
n is a given vector. The solution x can be found as follows. Let X(τ )

be an n× n matrix, which is a solution to the matrix system

d

dτ
X(τ ) = A(τ )X(τ ) with the intial condition X(0) = I,

where I is the n× n identity matrix. Then

(6.1.2) x(τ ) = X(τ )
(
x0 +

∫ τ

0

X−1(t)B(t)u(t) dt
)
.

In general, we want to choose the control u in the space L∞([0, 1],Rn
)
of vector-

valued functions [0, 1] −→ R
n. Then, if X(τ ) and B(τ ) are continuous, the integral

(6.1.2) is well defined. Let us consider x(τ ) defined by (6.1.2) as a solution to

the original system of differential equations, even though it may be, say, non-

differentiable at some points. In particular, if we are to choose the control u(τ ) in
such a way that some terminal condition x(1) = x1 is satisfied, we get the following

integral constraint:

(6.1.3)

∫ 1

0

X−1(τ )B(τ )u(τ ) dτ = X−1(1)x1 − x0.

PROBLEM.

1◦. Check that formula (6.1.2) indeed holds.

(6.2) Example. A problem of linear optimal control. Let us fix smooth real

functions a0(τ ), a1(τ ), b(τ ), c0(τ ), c1(τ ) and d(τ ): τ ∈ [0, 1]. Consider a differential

equation for a function x(τ )

x′′(τ ) = a0(τ )x(τ ) + a1(τ )x
′(τ ) + b(τ )u(τ ),

where u(τ ) is a control, which we would like to choose in such a way that the initial

conditions

x(0) = x0, x′(0) = v0

and the terminal conditions

x(1) = x1, x′(1) = v1

are satisfied and the functional

∫ 1

0

(
c0(τ )x(τ ) + c1(τ )x

′(τ ) + d(τ )u(τ )
)
dτ

is minimized. In addition, the control must satisfy the condition

0 ≤ u(τ ) ≤ 1 for all τ ∈ [0, 1].
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This is a simple example of a linear optimal control problem. The differential

equations describe the movement of an “object”, thus relating the coordinate x(τ ),
the velocity x′(τ ) and the acceleration x′′(τ ). The control u is a “force” we may

apply. We want to transfer the “object” from the initial position (coordinate,

velocity) to the final position (coordinate, velocity), so that the total cost we pay for

the coordinate (“gravity”), for the velocity (“friction”) and for the control (“fuel”)

is minimized.

Our aim is to show that this optimization problem can be considered as a linear
programming problem of the type:

Find γ = inf

∫ 1

0

g(τ )u(τ ) dτ

Subject to

∫ 1

0

f1(τ )u(τ ) dτ = β1,

∫ 1

0

f2(τ )u(τ ) dτ = β2 and

0 ≤ u(τ ) ≤ 1 for almost all τ ∈ [0, 1],

where u ∈ L∞[0, 1] is a variable and the functions f1, f2, g ∈ L1[0, 1] and the

numbers β1, β2 can be explicitly computed.

To see this, let us write the differential equation in the form (6.1.1) by intro-

ducing a new variable v(τ ) = x′(τ ). We get

d

dτ
x(τ ) = v(τ ) and

d

dτ
v(τ ) = a0(τ )x(τ ) + a1(τ )v(τ ) + b(τ )u(τ )

with the conditions

(
x(0)
v(0)

)
=

(
x0

v0

)
and

(
x(1)
v(1)

)
=

(
x1

v1

)
.

Thus, for vectors

x(τ ) =

(
x(τ )
v(τ )

)
and u(τ ) =

(
0

u(τ )

)

we have

A(τ ) =

(
0 1

a0(τ ) a1(τ )

)
and B(τ ) =

(
0 0

0 b(τ )

)

in (6.1.1). Now the formulas for f1, f2 and β1, β2 are obtained from (6.1.3). The

formula for g can be obtained from (6.1.2).

(6.3) Corollary. If the problem of linear optimal control is feasible, there exists
an optimal solution u ∈ L∞[0, 1] such that u(τ ) ∈ {0, 1} for almost all τ ∈ [0, 1].
If the optimal solution u ∈ L∞[0, 1] is unique, then u(τ ) ∈ {0, 1} for almost all
τ ∈ [0, 1].
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Proof. By Proposition 5.3, the set of all feasible controls u(τ ) is weak∗ compact.

By Corollary 4.2, there exists an optimal control u that is an extreme point of the

set of all feasible solutions. If u is unique, by Theorem II.3.2 (Part 1), u necessarily

is an extreme point. By Proposition 5.3, we must have u(τ ) ∈ {0, 1} for almost all

τ ∈ [0, 1]. �

The conclusion of Corollary 6.3 is something akin to “unrealistic solutions” in

the Diet Problem; see Example II.4.4. Indeed, it turns out that the optimal control

u at all times is either “hit the brakes” (u = 0) or “press the gas pedal to the floor”

(u = 1), which is not always acceptable in practice.

PROBLEMS.

1◦. Consider the equation

x′′(τ ) = a0(τ )x(τ ) + a1(τ )x
′(τ ) + b(τ )u(τ )

with the initial conditions

x(0) = 0 and x′(0) = 0.

Show that the solution x(τ ) depends linearly on the control u(τ ): if x1(τ ) is the

solution for u1(τ ), x2(τ ) is the solution for u2(τ ), then x(τ ) = α1x1(τ ) + α2x2(τ )
is the solution for u(τ ) = α1u1(τ ) + α2u2(τ ), where α1 and α2 are real numbers.

2◦. Let y(τ ) be a solution to the equation

y′′(τ ) = a0(τ )y(τ ) + a1(τ )y
′(τ )

with some initial conditions

y(0) = x0 and y′(0) = v0

and let z(τ ) be a solution of the equation

z′′(τ ) = a0(τ )z(τ ) + a1(τ )z
′(τ ) + b(τ )u(τ )

with the initial conditions z′(0) = z(0) = 0. Prove that x(τ ) = y(τ ) + z(τ ) is a

solution to the equation

x′′(τ ) = a0(τ )x(τ ) + a1(τ )x
′(τ ) + b(τ )u(τ )

with the initial conditions x(0) = x0 and x′(0) = v0.

Problems 1 and 2 provide some intuition for why problems of linear optimal

control can be written as linear programs of optimizing

∫ 1

0

g(τ )u(τ ) dτ subject

to integral constraints

∫ 1

0

fi(τ )u(τ ) dτ = βi and the “domain” constraint 0 ≤
u(τ ) ≤ 1. First, Problem 2 allows us to reduce (in “nice” cases) the general case

to the case of zero initial conditions. Next, if the initial conditions x(0), x′(0) are
zero, the terminal values x(1) and x′(1) are linear functions of the control u. A

“reasonable” linear function (say, weak∗ continuous) has the form

∫ 1

0

f(τ )u(τ ) dτ

for some f ∈ L1[0, 1]. Thus fixing the terminal values of the solution x amounts to

fixing some integral constraints on u.
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7. An Application: The Lyapunov Convexity Theorem

We apply Proposition 5.3 to obtain a theorem by A.A. Lyapunov (1940) which, in

full generality, asserts that the range of a non-atomic countably additive vector-

valued measure is convex. The proof below belongs to J. Lindenstrauss [Li66]. We

adapt it to the special case of a vector-valued measure on [0, 1].

(7.1) Theorem. Let us fix m functions f1, . . . , fm ∈ L1[0, 1] and let A be the
family of all Lebesgue measurable subsets of [0, 1]. For A ∈ A, let φ(A) ∈ R

m be
the point

φ(A) = (ξ1, . . . , ξm), where ξi =

∫

A

fi(τ ) dτ for i = 1, . . . ,m.

Then the set

X =
{
φ(A) : A ∈ A

}

is a compact convex set in R
m.

Proof. The idea is to prove that X can be represented as the image of a compact

convex set under a continuous linear map.

Let us extend φ to a map φ : L∞[0, 1] −→ R
m,

φ(u) = (ξ1, . . . , ξm), where ξi =

∫ 1

0

u(τ )fi(τ ) dτ for i = 1, . . . ,m.

Let

B =
{
u ∈ L∞[0, 1] : 0 ≤ u(τ ) ≤ 1 for almost all τ ∈ [0, 1]

}
.

Then B is convex and weak∗ compact (see Proposition 5.2). Since φ is linear and

continuous, the image φ(B) ⊂ R
m is a compact convex set.

Next, we claim that φ(B) = X. Clearly, X ⊂ φ(B).

Conversely, let us choose a = (α1, . . . , αm) ∈ φ(B). Then the set

Ba =
{
u ∈ B :

∫ 1

0

u(τ )fi(τ ) dτ = αi, for i = 1, . . . ,m
}

is non-empty and weak∗ compact (Proposition 5.3). Therefore, by the Krein-

Milman Theorem (Theorem 4.1), there is an extreme point ua ∈ Ba; cf. Figure 42.

By Proposition 5.3, we have ua(τ ) ∈ {0, 1} for almost all τ .

Let A =
{
τ : ua(τ ) = 1

}
. Then φ(A) = a. Therefore, φ(B) ⊂ X and the result

follows. �
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Recall that we used a similar “convexification” argument in Sections II.13–14

on quadratic convexity.

A B

a X a X

�

u

B

a

a

Figure 42. “Convexification”: given a set A and a map φ, we find a

convex set B such that φ(B) = φ(A) and φ is linear on B.

Here is an interesting corollary.

(7.2) Corollary. Let S ⊂ R be a Lebesgue measurable set and suppose that
Fi(x, τ ) : S × [0, 1] −→ R, i = 1, . . . ,m, are Lebesgue integrable functions. Let
Γ denote the set of all Lebesgue measurable functions x : [0, 1] −→ S. For a func-
tion x ∈ Γ, let us define ψ(x) ∈ R

m by

ψ(x) = (ξ1, . . . , ξm), where ξi =

∫ 1

0

Fi

(
x(τ ), τ

)
dτ for i = 1, . . . ,m.

Then the set X ⊂ R
m,

X =
{
ψ(x) : x ∈ Γ

}
,

is convex.

Proof. Let us choose two points a, b ∈ X. Hence we have a = ψ(x) and b = ψ(y)
for some Lebesgue measurable functions x and y on the interval [0, 1], such that

x(τ ), y(τ ) ∈ S for all τ . We will construct a convex set Y ⊂ R
m, such that Y ⊂ X

and a, b ∈ Y . This will prove that X is convex. To do that, for a Lebesgue

measurable subset A ⊂ [0, 1], let us define a function zA(τ ):

zA(τ ) =

{
x(τ ) if τ ∈ A,

y(τ ) if τ /∈ A;

cf. Figure 43.
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Figure 43

Obviously, zA ∈ Γ. Let

Y =
{
ψ(zA) for some Lebesgue measurable A ⊂ [0, 1]

}
.

Since z[0,1](τ ) = x(τ ) and z∅(τ ) = y(τ ), we have a, b ∈ Y . Since zA ∈ Γ, we

conclude that Y ⊂ X. To see that Y is convex, let us define functions fi ∈ L1[0, 1],
i = 1, . . . ,m, by the formulas:

fi(τ ) = Fi

(
x(τ ), τ

)
− Fi

(
y(τ ), τ

)
for i = 1, . . . ,m.

For a Lebesgue measurable set A ⊂ [0, 1], let

φ(A) = (ξ1, . . . , ξm), where ξi =

∫

A

fi(τ ) dτ for i = 1, . . . ,m.

Let

c = (γ1, . . . , γm), where γi =

∫ 1

0

Fi

(
y(τ ), τ

)
dτ for i = 1, . . .m.

Then ψ(zA) = φ(A) + c. Therefore, the set Y is a translation (by c) of the set{
φ(A) : A ⊂ [0, 1] is Lebesgue measurable

}
.

The latter set is convex by Theorem 7.1. �

PROBLEMS.

1◦. Let us consider the set X ⊂ R
3 consisting of the points a = (α1, α2, α3),

such that

α1 =

∫ 1

0

cos
(
τx(τ )
)
dτ, α2 =

∫ 1

0

τ3x2(τ ) dτ, α3 =

∫ 1

0

τ22x(τ) dτ,

where x(τ ) ranges over the set of all Lebesgue measurable functions x : [0, 1] −→
(0, e) ∪ (π, 4). Prove that X is a convex set.

2∗. Draw a picture of the set X from Problem 1.
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8. The “Simplex” of Probability Measures 133

8. The “Simplex” of Probability Measures

In this section, we present a certain infinite-dimensional analogue of a standard

simplex; cf. Section I.2.2. First, we construct the ambient space.

(8.1) The space of continuous functions and its dual. Let C[0, 1] be the

vector space of all real-valued continuous functions on the interval [0, 1]. We make

C[0, 1] a topological vector space by declaring a set U ⊂ C[0, 1] open if for every

f ∈ U there is an ε > 0 such that the set

U(f, ε) =
{
g ∈ C[0, 1] : |f(τ )− g(τ )| < ε for all 0 ≤ τ ≤ 1

}

is contained in U ; cf. Problem 1, Section 2.6. Let V [0, 1] be the space of all

continuous linear functionals φ : C[0, 1] −→ R. The space V [0, 1] is often called the

space of signed Borel measures on [0,1]. The reason for such a name is that every

continuous linear functional φ : C[0, 1] −→ R can be represented in the form

φ(f) =

∫ 1

0

f dμ,

where μ is a signed Borel measure; see, for example, Appendix C of [Co90]. Thus

μ may be a regular measure, like μ = τ2 dτ ,

φ(f) =

∫ 1

0

f(τ )τ2 dτ

or a δ-measure, like μ = δ1/2,

φ(f) = f(1/2).

We make V [0, 1] a topological vector space by introducing the weak∗ topology (see

Section 2.8).

PROBLEMS.

1◦. Check that C[0, 1] is a locally convex topological vector space.

2. Let us define the norm p(φ) of a linear functional φ : C[0, 1] −→ R by

p(φ) = sup
{
|φ(f)| : f ∈ C[0, 1] and |f(τ )| ≤ 1 for all τ ∈ [0, 1]

}
.

Find the norms of the linear functionals

φ(f) =

∫ 1

0

f(τ ) dτ, φ(f) =

∫ 1

0

τf(τ ) dτ and φε(f) =
f(1/2 + ε)− f(1/2− ε)

2ε
,

where ε > 0 is a parameter.

We introduce the central object of this section.
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134 III. Convex Sets in Topological Vector Spaces

(8.2) Definitions. A linear functional φ : C[0, 1] −→ R is called positive if

φ(f) ≥ 0 for all f such that f(τ ) ≥ 0 for all 0 ≤ τ ≤ 1. Let Δ ⊂ V [0, 1] be
the set of all positive linear functionals φ : C[0, 1] −→ R such that φ(1) = 1, where

1 is the function that is identically 1 on [0, 1]. The set Δ is called the set of all

Borel probability measures on [0, 1]. Let us fix a τ ∈ [0, 1]. The linear functional

δτ : C[0, 1] −→ R, where δτ (f) = f(τ ), is called the delta-measure.

The set Δ of Borel probability measures is our infinite-dimensional analogue of

the standard simplex; see Problem 1 of Section 8.4 for some justification.

PROBLEMS.

1. Prove that every positive linear functional is continuous.

2. Prove that every continuous linear functional φ : C[0, 1] −→ R can be

represented in the form φ = φ1−φ2, where φ1 and φ2 are positive linear functionals.

Hint: Let f ∈ C[0, 1] be a non-negative function, f(τ ) ≥ 0 for all τ ∈ [0, 1]. Let
φ1(f) = sup

{
φ(g) : 0 ≤ g(τ ) ≤ f(τ ) for all τ ∈ [0, 1]

}
.

3. Let φ be a positive linear functional such that φ(1) = 0. Prove that φ = 0.

4◦. Prove that Δ is a convex set and that δτ ∈ Δ for any τ ∈ [0, 1].

5◦. Prove that δτ (fg) = δτ (f)δτ (g) for any τ ∈ [0, 1] and any two functions

f, g ∈ C[0, 1].

6. Let φ : C[0, 1] −→ R be a linear functional such that φ(fg) = φ(f)φ(g)
for any two functions f, g ∈ C[0, 1]. Prove that either φ = 0 or φ = δτ for some

τ ∈ [0, 1].

7. Prove that δτ is an extreme point of Δ for any τ ∈ [0, 1].

(8.3) Proposition. The set Δ is compact in the weak∗ topology of V [0, 1].

PROBLEM.

1. Deduce Proposition 8.3 from Theorem 2.9.

(8.4) Proposition. The extreme points of the set Δ of Borel probability measures
on the interval [0, 1] are the delta-measures δτ for τ ∈ [0, 1].

Proof. Let us choose a τ∗ ∈ [0, 1]. First, we prove that δ∗ = δτ∗ is indeed an

extreme point of Δ. Clearly, δ∗ ∈ Δ (see Problem 4, Section 8.2). Suppose that

δ∗ = (φ1 + φ2)/2 for some φ1, φ2 ∈ Δ. Let f be any continuous function such

that f(τ∗) = 1 and f(τ ) ≤ 1 for all τ ∈ [0, 1]. Since φ1 and φ2 are positive linear

functionals, we have

φi(f) = φi

(
1− (1− f)

)
= φi(1)− φi(1− f) ≤ 1.

On the other hand, δ∗(f) = 1. Therefore, we must have φ1(f) = φ2(f) = 1. By

linearity, it then follows that φ1(f) = φ2(f) = f(τ∗) for any function f ∈ C[0, 1]
such that f(τ∗) ≥ f(τ ) for all τ ∈ [0, 1]. That is, φ1 and φ2 agree with δτ∗ on

every function f attaining its maximum at τ∗. Now, for any f ∈ C[0, 1], we have

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



8. The “Simplex” of Probability Measures 135

f = g1 − g2, where g1(τ ) = min{f(τ∗), f(τ )} and g2(τ ) = min{0, f(τ∗)− f(τ )}.

0 0

f

g

g

1

2

�� 11
� �

Figure 44. Representing a given function f as a difference of two

functions g1 and g2 that attain their maximum at a given point τ∗

Hence g1 and g2 are continuous functions on the interval [0, 1] that attain their

maximum value at τ∗. Therefore, φi(gj) = gj(τ
∗) for i, j = 1, 2. By linearity, we

conclude that φi(f) = φi(g1) − φi(g2) = f(τ∗). Therefore, φ1 = φ2 = δ∗, so δ∗ is

an extreme point.

Suppose that φ is an extreme point of Δ. First, we establish that φ(fg) =

φ(f)φ(g) for any two functions f, g ∈ C[0, 1] and then we deduce that φ = δτ for

some τ ∈ [0, 1]. Let us fix a function h ∈ C[0, 1]. Then ψ : C[0, 1] −→ R defined

by ψ(f) = φ(hf) is a continuous linear functional on C[0, 1]. Let us choose h such

that 0 < h(τ ) < 1 for all τ ∈ [0, 1]. Since φ is positive, we have 0 < φ(h) < 1. We

define ψ1, ψ2 : C[0, 1] −→ R by

ψ1(f) =
φ(hf)

φ(h)
and ψ2(f) =

φ
(
(1− h)f

)
φ(1− h)

.

It is easy to see that ψi ∈ Δ. We can write φ as a convex combination

φ = φ(h)ψ1 + φ(1− h)ψ2.

Since φ is an extreme point of Δ, we must have ψ1 = ψ2 = φ. In particular,

φ(fh) = φ(h)φ(f) for any f ∈ C[0, 1] and any h such that 0 < h(τ ) < 1 for each

τ ∈ [0, 1]. By linearity, it follows that φ(fg) = φ(f)φ(g) for any two f, g ∈ C[0, 1].

Let H =
{
f ∈ C[0, 1] : φ(f) = 0

}
be the kernel of φ. Hence H is a (closed)

hyperplane in C[0, 1]. We observe that for every f ∈ H, there is a τ ∈ [0, 1]
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136 III. Convex Sets in Topological Vector Spaces

such that f(τ ) = 0. Indeed, if f ∈ H is a function which is nowhere 0, then

1/f is a continuous function and we would have had 1 = φ(1) = φ(f · (1/f)) =

φ(f)φ(1/f) = 0, which is a contradiction. Next, we observe that any set of finitely

many functions f1, . . . , fm ∈ H has a common zero τ∗: f1(τ∗) = . . . = fm(τ∗) = 0.

Otherwise, the function f = f2
1 + . . .+ f2

m is everywhere positive and f ∈ H since

φ(f) = φ(f2
1 ) + . . . + φ(f2

m) = φ2(f1) + . . . + φ2(fm) = 0. But we already proved

that every function f ∈ H must have a zero. Finally, we conclude that there is a

point τ∗ ∈ [0, 1] such that f(τ∗) = 0 for any f ∈ H. Indeed, for any f ∈ C[0, 1],
the set Xf =

{
τ ∈ [0, 1] : f(τ ) = 0

}
is a closed set and any finite intersection

Xf1 ∩ . . .∩Xfm for f1, . . . , fm ∈ H is non-empty. Since [0, 1] is a compact interval,

the intersection
⋂
f∈H

Xf is non-empty. Now we see that H is a subset of the kernel of

δτ∗ , which implies that φ = αδτ∗ for some α ∈ R. Hence φ = δτ∗ , which completes

the proof. �

PROBLEMS.

1. Consider the “discretization” of spaces C[0, 1] and V [0, 1]. Namely, fix a set

T of d points 0 ≤ τ1 < . . . < τd ≤ 1 in the interval [0, 1]. Interpret the space C(T ) of
functions continuous on T as R

d. Identify the space V (T ) of all continuous linear

functionals on C(T ) with R
d. Identify the set Δ of all non-negative functionals

φ ∈ V (T ) such that φ(1) = 1 with the simplex

Δd =
{
(γ1, . . . , γd) :

d∑
i=1

γi = 1 and γi ≥ 0 for i = 1, . . . , d
}
;

cf. Problem 1 of I.2.2. Hence Δ ⊂ V [0, 1] may be considered as an infinite-

dimensional version of the simplex.

2. Let O ⊂ V [0, 1] be the set of functionals φ such that |φ(f)| ≤ 1 for any

f ∈ C[0, 1] with the property that |f(τ )| ≤ 1 for each τ ∈ [0, 1]. Prove that the

extreme points of O are δτ and −δτ for τ ∈ [0, 1]. Hence O may be considered as

an infinite-dimensional analogue of the (hyper)octahedron; see Section I.2.2.

Notation. For μ ∈ V [0, 1] and f ∈ C[0, 1] we often write

∫ 1

0

f dμ instead of μ(f).

9. Extreme Points of the Intersection. Applications

We need a simple and useful result which describes the extreme points of the inter-

section of a convex set with an affine subspace. First, we describe the intersection

with a hyperplane.

(9.1) Lemma. Let V be a vector space and let K ⊂ V be a convex set, such that
for every straight line L ⊂ V the intersection K ∩ L is a closed bounded interval,
possibly empty or a point. If H ⊂ V is an affine hyperplane, then every extreme
point of K ∩H can be expressed as a convex combination of at most two extreme
points of K.
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Proof. Let u be an extreme point of K ∩H. If u is an extreme point of K, the

result follows. Otherwise, there are two distinct points u+, u− ∈ K, such that

u = (u+ + u−)/2. Let L be the straight line passing through u+ and u−. The

intersection L ∩ K = [u1, u2] is a closed interval, containing u in its interior. We

claim that u1 and u2 are extreme points of K. Suppose, for example, that u1 is not

an extreme point of K. Then there are two distinct points v+, v− ∈ K, such that

u1 = (v+ + v−)/2. Clearly, v+ /∈ L and v− /∈ L. Consider the 2-dimensional plane

A passing through the points v+, v−, and u2 and the triangle Δ = conv(v+, v−, u2)

in the plane A; see Figure 45.

u

u

v v+ -
u

1

2

M

Figure 45

The point u is an interior point of the triangle. Since H is a hyperplane, the

intersection M = A ∩H is a straight line passing through u. Since u is an interior

point of Δ, the intersection Δ ∩H is an interval, containing u as its interior point.

Since K is convex, Δ∩H ⊂ K ∩H, so the intersection K ∩H contains an interval,

containing u as its interior point, which contradicts the assumption that u is an

extreme point of K ∩H.

The contradiction shows that u1 and u2 are extreme points of K ∩H. Since u
is a convex combination of u1 and u2, the result follows. �

Carathéodory’s Theorem (Theorem I.2.3) determines the number of points of a

set A which are needed to represent a point of the set B as a convex combination,

provided B is the convex hull of A. The following result determines the number of

points which are needed if B is a section of A. We call it the dual Carathéodory
Theorem (we discuss the general concept of duality in Chapter IV and the duality

between intersections and convex hulls in Section IV.1).
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(9.2) Theorem. Let K be a convex subset of a vector space V such that for any
straight line L the intersection K ∩ L is a closed bounded interval, possibly empty
or a point. Then every extreme point of the intersection of K with m hyperplanes
H1, . . . , Hm can be expressed as a convex combination of at most m + 1 extreme
points of K. Equivalently, if A ⊂ V is an affine subspace such that codimA = m,
then every extreme point of the intersection K ∩ A can be expressed as a convex
combination of at most m+ 1 extreme points of K.

Proof. First, we prove that every extreme point of the intersectionK∩H1∩. . .∩Hm

is a convex combination of extreme points of K. Let us define K0 = K and

Ki = Ki−1 ∩Hi, i = 1, . . . ,m. Since the intersection of a straight line L with any

affine subspace in V is either L itself or a point or empty, we can apply Lemma 9.1

to Ki. Hence we conclude that every extreme point of Ki is a convex combination

of at most two extreme points of Ki−1. Therefore, every extreme point of Km =

K∩H1∩ . . .∩Hm is a convex combination of at most 2m extreme points of K0 = K.

Let u be an extreme point of K ∩H1 ∩ . . . ∩Hm. Let us write

u = α1u1 + . . .+ αnun, where

αi ≥ 0 and ui ∈ ex(K) for i = 1, . . . , n and

α1 + . . .+ αn = 1,

with the smallest possible n (we know that we can choose n ≤ 2m). Clearly, αi > 0

for all i = 1, . . . , n. Furthermore, the points u1, . . . , un are affinely independent,

since otherwise we could have reduced n as in the proof of Carathéodory’s Theorem

(see Theorem I.2.3). Therefore, u is an interior point of the (n − 1)-dimensional

simplex Δ = conv(u1, . . . , un) ⊂ K (cf. Problem 1, Section II.2.3). If n > m + 1,

then the intersection Δ ∩ H1 . . . ∩ Hm contains an interval containing u as its

interior point, which contradicts the assumption that u is an extreme point of

K ∩H1 ∩ . . . ∩Hm. Hence n ≤ m+ 1 and the proof follows. �

PROBLEMS.

1. Show by example that, in general, the constant m+1 in Theorem 9.2 cannot

be reduced.

2◦. Let K =
{
x ∈ R

d : ‖x‖ ≤ 1
}
be a ball. Prove that every extreme point of

K ∩H1 ∩ . . . ∩Hm is an extreme point of K.

3. Let Rd : d = n(n + 1)/2 be the space of n × n symmetric matrices and let

K =
{
X � 0 and tr(X) = 1

}
. Prove that every extreme point of K ∩H1∩ . . .∩Hm

is a convex combination of not more than �(
√
8m+ 1− 1)/2�+1 extreme points of

K.

Hint: Cf. Proposition II.13.1.

4. Let R
d, d = n2, be the space of all n × n matrices and let K ⊂ R

d be the

Birkhoff Polytope (the polytope of doubly stochastic matrices; see Section II.5).

Let S ⊂ R
d be the subspace of all n × n symmetric matrices. Prove that every

extreme point of K ∩ S can be represented as a convex combination of not more

than two extreme points of K.
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A generalization of Problem 4:

5. Let G be a finite group of linear transformations of Rd. Let K ⊂ R
d be a

compact convex set, which is G-invariant: g(x) ∈ K for all g ∈ G and all x ∈ K.

Let L =
{
x ∈ R

d : g(x) = x for all g ∈ G
}
be the subspace of G-invariant vectors

(check that L is indeed a subspace). Prove that every extreme point of K ∩ L is a

convex combination of not more than |G| (the cardinality of G) extreme points of

K.

Theorem 9.2 looks intuitively obvious in small dimensions; see Figure 46.

u

v
1

u

v
2

v
1

v
2

v
3a ) b )

Figure 46. a) u is a convex combination of v1 and v2; b) u is a convex

combination of v1, v2 and v3.

It has some interesting infinite-dimensional applications.

(9.3) Application: extreme points of a set of probability measures. Let

f1, . . . , fm ∈ C[0, 1] be continuous functions on the interval [0, 1]. Suppose that μ
is an unknown Borel probability measure on the interval [0, 1] (see Section 8) but

we know the expectations
∫ 1

0

fi dμ = αi, i = 1, . . . ,m.

We want to estimate the expectation

α0 =

∫ 1

0

g dμ

of yet another known function g ∈ C[0, 1]. For instance, if we have fi(τ ) = τ i,
i = 1, . . . ,m, then αi are the moments of μ, and g is some other function of

interest. Theorem 9.2 and Proposition 8.4 lead to the following useful discretization
principle.
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(9.4) Proposition. Let us fix continuous functions g, f1, . . . , fm on the interval
[0, 1] and real numbers α1, . . . , αm. Suppose that the set B of Borel probability
measures μ on [0, 1] satisfying the equations

∫ 1

0

fi dμ = αi for i = 1, . . . ,m

is non-empty. Then there exist measures μ+, μ− ∈ B such that
1. the measures μ+ and μ− are convex combinations of at most m + 1 delta-

measures:

μ+ =

m+1∑
i=1

λ+
i δτ+

i
, μ− =

m+1∑
i=1

λ−
i δτ−

i
,

where

m+1∑
i=1

λ+
i =

m+1∑
i=1

λ−
i = 1, λ+

i , λ
−
i ≥ 0 for i = 1, . . . ,m+ 1,

and τ+i , τ−i ∈ [0, 1] for i = 1, . . . ,m+ 1;
2. the set of values

α0 =

∫ 1

0

g dμ for μ ∈ B

is the interval [α−, α+], where

α− =

∫ 1

0

g dμ− and α+ =

∫ 1

0

g dμ+.

Proof. The set B can be represented as the intersection B = Δ ∩H1 ∩ . . . ∩Hm,

where Δ is the simplex of Borel probability measures (see Section 8) and the affine

hyperplanes Hi are defined by the equations:

Hi =
{
μ ∈ V [0, 1] :

∫ 1

0

fi dμi = αi

}
.

Clearly, B is convex. Since Δ is weak∗ compact (Proposition 8.3) and Hi are closed

in the weak∗ topology, the set B is compact. The function

α0 : μ �−→
∫ 1

0

g dμ

is weak∗ continuous and hence by Corollary 4.2 there is an extreme point μ− of B
where α0 attains its minimum on B and there is an extreme point μ+ of B where

α0 attains its maximum on B. By Theorem 9.2, μ− and μ+ can be represented as

convex combinations of some m + 1 extreme points of Δ. Proposition 8.4 implies

that the extreme points of Δ are the delta-measures. �
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PROBLEMS.

1. Let us fix an α ∈ [0, 1]. Find a probability measure μ on [0, 1] such that∫ 1

0

τ dμ = α and

∫ 1

0

(τ − α)2 dμ is maximized.

2. Let μ be a probability measure on [0, 1]. Let

D(μ) =

∫ 1

0

τ2 dμ−
(∫ 1

0

τ dμ
)2

be the variance of μ. Prove that 0 ≤ D(μ) ≤ 1/4.

Hint: Use Problem 1.

3. Let us consider the set Sd+1 of all (d + 1)-tuples (ξ0, . . . , ξd), where ξi =∫ 1

0

τ i dμ for some μ ∈ Δ and i = 0, . . . , d. Prove that Sd+1 is the section of the

moment cone Md+1 (see Section II.9) by the hyperplane ξ0 = 1.

10. Remarks

For topological vector spaces, the Krein-Milman Theorem and spaces L1, L∞, C[0, 1]
and V [0, 1] see [Bou87], [Ru91] and [Co90]. We note that many of the results of

Sections 5, 7, 8 and 9 can be generalized in a straightforward way if the interval

[0, 1] is replaced by a compact metric space X. The author learned Corollary 7.2

and its proof from A. Megretski; see also [MT93]. A general reference for optimal

control theory is [BH75].
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Chapter IV

Polarity, Duality and

Linear Programming

Duality is a powerful technique in convexity theory which emerges as the most

symmetric way to state separation theorems. Often, non-trivial facts are obtained

from trivial ones by simple “translation” using the language of duality. We start

with polarity in Euclidean space, prove that it extends to a valuation on the algebra

of closed convex sets, complete the proof of the Weyl-Minkowski Theorem and prove

a necessary and sufficient condition for a point to belong to the moment cone. We

proceed to develop the duality theory for linear programming in topological vector

spaces ordered by cones. We revisit many of the familiar problems such as the

Diet Problem, the Transportation Problem, the problem of uniform (Chebyshev)

approximation and the L∞ linear programming problems related to optimal control

and study some new problems, such as problems of semidefinite programming and

the Mass-Transfer Problem. We obtain characterizations of optimal solutions in

these problems.

1. Polarity in Euclidean Space

Let us define the central object of this section.

(1.1) Definition. Let A ⊂ R
d be a non-empty set. The set

A◦ =
{
c ∈ R

d : 〈c, x〉 ≤ 1 for all x ∈ A
}

is called the polar of A.

143
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PROBLEMS.

1◦. Prove that A◦ is a closed convex set containing the origin.

2◦. Prove that
(
R

d
)◦

= {0} and that {0}◦ = R
d.

3◦. Prove that if A ⊂ B, then B◦ ⊂ A◦.

4◦. Prove that
(⋃

i∈I Ai

)◦
=
⋂

i∈I A
◦
i .

5◦. Let A ⊂ R
d be a set and let α > 0 be a number. Prove that (αA)◦ = α−1A◦.

6. Let L ⊂ R
d be a linear subspace. Prove that L◦ is the orthogonal comple-

ment of L.

7◦. Let A = conv
(
v1, . . . , vm

)
be a polytope. Prove that

A◦ =
{
x ∈ R

n : 〈vi, x〉 ≤ 1, for i = 1, . . . ,m
}
.

8◦. Prove that A ⊂ (A◦)◦.

Here is one of our main tools which we use to “translate” properties and state-

ments about convex sets.

(1.2) The Bipolar Theorem. Let A ⊂ R
d be a closed convex set containing the

origin. Then (A◦)◦ = A.

Proof. From Problem 8, Section 1.1, we saw that A ⊂ (A◦)◦. It remains to show,

therefore, that (A◦)◦ ⊂ A. Suppose that there is a point u such that u ∈ (A◦)◦ and

yet u /∈ A. Since A is closed and convex, by Theorem III.1.3 there exists an affine

hyperplane strictly separating u from A. In other words, there exists a vector c �= 0

and a number α such that 〈c, x〉 < α for all x ∈ A and 〈c, u〉 > α. Since 0 ∈ A, we

conclude that α > 0. Let us consider b = α−1c. We have 〈b, x〉 < 1 for all x ∈ A
and hence b ∈ (A◦). However, 〈b, u〉 > 1, which contradicts the assumption that

u ∈ (A◦)◦. Therefore (A◦)◦ ⊂ A and the result follows. �

PROBLEMS.

1◦. Prove that ((A◦)◦)◦ = A◦ for every non-empty set A ⊂ R
d.

2. Let A ⊂ R
d be a non-empty set. Prove that (A◦)◦ is the closure of

conv
(
A ∪ {0}

)
.

3. Let A =
{
x ∈ R

d : 〈ci, x〉 ≤ 1 for i = 1, . . . ,m
}
. Prove that A◦ =

conv(0, c1, . . . , cm).

4. Let A ⊂ R
d be a non-empty set such that A◦ = A. Prove that

A =
{
x ∈ R

d : ‖x‖ ≤ 1
}
,

the unit ball.

5. Let A =
{
(ξ1, . . . , ξd) : −1 ≤ ξi ≤ 1 for i = 1, . . . , d

}
and let B ={

(ξ1, . . . , ξd) : |ξ1|+ . . .+ |ξd| ≤ 1
}
. Prove that A◦ = B and B◦ = A.
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6. Let us fix p, q > 0 such that 1/p+ 1/q = 1. Let

A =
{
(ξ1, . . . , ξd) :

d∑
i=1

|ξi|p ≤ 1
}

and B =
{
(ξ1, . . . , ξd) :

d∑
i=1

|ξi|q ≤ 1
}
.

Prove that A◦ = B and that B◦ = A.

7◦. Let B(0, λ) =
{
x ∈ R

d : ‖x‖ ≤ λ
}
be the ball of radius λ. Prove that

B(0, λ)◦ = B(0, 1/λ).

Now we are ready to prove the second part of the Weyl-Minkowski Theorem

(the first part is Corollary II.4.3), which will be the first time we obtain a result by

translating a known result.

(1.3) Corollary. A polytope is a polyhedron.

Proof. Let P = conv
(
v1, . . . , vm

)
be a polytope in R

d. Without loss of generality

we may assume that intP �= ∅ (otherwise, we consider the smallest affine subspace

containing P – see Theorem II.2.4) and that 0 ∈ intP (otherwise, we shift P ). In

other words, B(0, ε) ⊂ P for some ε > 0, where B(0, λ) is the ball of radius λ
centered at the origin. By Problem 3, Section 1.1 and Problem 7, Section 1.2, we

have P ◦ ⊂ B(0, ε)◦ = B(0, 1/ε), so P ◦ is bounded. Furthermore,

P ◦ =
{
c ∈ R

d : 〈c, vi〉 ≤ 1 for i = 1, . . . ,m
}
,

so P ◦ is a polyhedron (cf. Problem 7, Section 1.1). Hence P ◦ is a bounded poly-

hedron and therefore by Corollary II.4.3 it is a polytope:

P ◦ = conv
(
u1, . . . , un

)
for some ui ∈ R

d.

Applying the Bipolar Theorem (Theorem 1.2), we conclude that

P = (P ◦)◦ =
{
x ∈ R

d : 〈x, ui〉 ≤ 1 for i = 1, . . . , n
}

is a polyhedron. �

PROBLEM.

1. Prove that the polar of a polyhedron is a polyhedron.

Here are some interesting dualities:

2. Let us define the projective plane RP
2 as follows: the points of RP2 are the

straight lines in R
3 passing through the origin. The straight lines in RP

2 are the

planes in R
3 passing through the origin. As usual, a line in RP

2 (a plane in R
3)

consists of points of RP2 (lines in R
3).

Prove that for every two distinct points A and B of RP
2 there is a unique

straight line c ⊂ RP
2 that contains A and B.
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Prove that every two distinct lines a, b ∈ RP
2 intersect at a unique point C.

There is the polarity correspondence between points and lines of RP2: a point

A ∈ RP
2 corresponds to a line a ⊂ RP

2 if and only if A, considered as a line in

R
3, is orthogonal to a, considered as a plane in R

3. Prove that a point C is the

intersection of two distinct lines a and b if and only if the distinct points A and B
lie on the straight line c.

A

a
0

C

c

B

A

b

a

Figure 47. The polarity correspondence between points and straight

lines in RP
2

The Euclidean plane R
2 can be embedded in RP

2 in the following way. Let

us identify R
2 with an affine plane in R

3, not passing through the origin. A point

x ∈ R
2 is identified with the straight line X ⊂ R

3, passing through x and the origin.

Hence, x is identified with a point of RP2; see Figure 48.

R

0

2

x

Figure 48. A point in R
2 is identified with a point in RP

2 and a line

in R
2 is identified with a line in RP

2.

Prove that straight lines in R
2 are identified with straight lines in RP

2. Describe

the points of RP2 that are not identified with any point of R2 and the straight lines

in RP
2 that are not identified with any straight line of R2.
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3. A polytope P ⊂ R
d is called self-dual if the origin is an interior point of P

and P ◦ can be obtained from P by an invertible linear transformation. Suppose

that P = conv(v1, . . . , vd+1), where v1, . . . , vd+1 are affinely independent and 0 =

v1 + . . .+ vd+1. Prove that P is self-dual.

4. Prove that the cube Id =
{
(ξ1, . . . , ξd) : −1 ≤ ξi ≤ 1, i = 1, . . . , d

}
is not

self-dual for d > 2. Prove that I1 and I2 are self-dual.

5. Prove that a regular polygon in R
2, containing the origin as its center, is

self-dual.

6. Let e1, e2, e3, e4 be the standard orthonormal basis of R4. The polytope

P = conv
(
ei + ej ,−ei − ej , ei − ej : 1 ≤ i �= j ≤ 4

)

is called the 24-cell. Prove that P is self-dual.

The polytope P is a regular 4-dimensional polytope having twenty-four vertices

and twenty-four facets; see also Problem 9 of Section VII.3.2.

Recall (Section II.8) that a convex set K ⊂ R
d is called a convex cone if 0 ∈ K

and λx ∈ K for every x ∈ K and λ ≥ 0. Polars of cones look especially natural.

(1.4) Lemma. Let K ⊂ R
d be a convex cone. Then

K◦ =
{
x ∈ R

d : 〈x, y〉 ≤ 0 for every y ∈ K
}
.

Proof. By Definition 1.1, K◦ consists of all the points x in R
d such that 〈x, y〉 ≤ 1

for all y ∈ K. Suppose that for some x ∈ K◦ and some y ∈ K we have 〈x, y〉 > 0.

Then, for a sufficiently large λ > 0, one has 〈x, λy〉 > 1. Since K is a cone, λy ∈ K,

which contradicts the definition of K◦. �

PROBLEMS.

1◦. Prove that the polar of a cone is a cone.

2◦. Let K1,K2 ⊂ R
d be cones. Prove that (K1 +K2)

◦ = K◦
1 ∩K◦

2 .

3. Let K1,K2 ⊂ R
d be closed convex cones. Prove that (K1 ∩ K2)

◦ is the

closure of K◦
1 +K◦

2 .

4. Prove that a convex cone K ⊂ R
d is the conic hull of a finite set if and only

if K can be represented in the form K =
{
x ∈ R

d : 〈ci, x〉 ≤ 0, i ∈ I
}
for a finite,

possibly empty, set of vectors
{
ci, i ∈ I

}
⊂ R

d. Such cones are called polyhedral.

It turns out that polarity can be extended to a valuation on the algebra C(Rd)

of closed convex sets; cf. Definition I.7.3. The following result is due to J. Lawrence;

see [L88].

(1.5) Theorem. There exists a linear transformation D : C(Rd) −→ C(Rd) such
that D

(
[A]
)
= [A◦] for any non-empty closed convex set A ⊂ R

d.
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Proof. For ε > 0, let us define the function Fε : R
d × R

d −→ R,

Fε(x, y) =

{
1 if 〈x, y〉 ≥ 1 + ε,

0 otherwise.

For a function g ∈ C(Rd) and a fixed y ∈ R
d, let us consider the function hy,ε(x) =

g(x)Fε(x, y). We claim that hy,ε ∈ C(Rd). By linearity, it suffices to check this in

the case when g = [A] is the indicator function of a closed convex set A ⊂ R
d. In

this case, hy,ε = [A ∩Hy,ε], where

Hy,ε =
{
x ∈ R

d : 〈x, y〉 ≥ 1 + ε
}

is a closed halfspace. Since [A ∩Hy,ε] is a closed convex set, we have hy,ε ∈ C(Rd)

and we can apply the Euler characteristic χ (cf. Section I.7):

χ
(
hy,ε

)
=

{
1 if 〈x, y〉 ≥ 1 + ε for some x ∈ A,

0 otherwise.

For g ∈ C(Rd) let us define fε = Dε(g) by the formula:

fε(y) = χ(g)− χ(hy,ε) = χ(g)− χ
(
g(x)Fε(x, y)

)
for all y ∈ R

d.

By Theorem I.7.4, we conclude that

(1.5.1) Dε(α1g1 + α2g2) = α1Dε(g1) + α2Dε(g2)

for all g1, g2 ∈ C(Rd) and all α1, α2 ∈ R. Suppose that g = [A] is the indicator

function of a non-empty closed convex set A. Then for fε = Dε(g) we have

fε(y) =

{
1 if 〈x, y〉 < 1 + ε for all x ∈ A,

0 otherwise.

Therefore,

(1.5.2) lim
ε−→+0

fε(y) =

{
1 if 〈x, y〉 ≤ 1 for all x ∈ A,

0 otherwise.

Now, for g ∈ C(Rd) we define f = D(g) by

f(y) = lim
ε−→+0

fε(y) where fε = Dε(g).

By (1.5.1) and (1.5.2) it follows that D(g) is well defined, that D[A] = [A◦] for all
non-empty closed convex sets A ⊂ R

d and that D(α1g1+α2g2) = α1D(g1)+α2D(g2)
for all g1, g2 ∈ C(Rd) and all α1, α2 ∈ R. �
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PROBLEMS.

1◦. Check that the subspace C0(Rd) ⊂ C(Rd) spanned by the indicator functions

[A] of closed convex set A ⊂ R
d containing the origin is a subalgebra of C(Rd) and

that D maps C0(Rd) onto itself. Consider the restriction D : C0(Rd) −→ C0(Rd).

Prove that D2 = id, where id is the identity transformation of C0(Rd).

2. Find the eigenvalues of D as an operator D : C0(Rd) −→ C0(Rd).

3. Consider the subalgebra Cop(Rd) generated by the indicator functions [K]

of polyhedral cones K (see Problem 4 of Section 1.4). Prove that there exists a

bilinear operation � such that [K1] � [K2] = [K1+K2] for any two polyhedral cones

K1 and K2 (cf. Problem 1 of Section I.8.2). Prove that the operator D maps the

space Cop(Rd) onto itself. Furthermore, prove that D(fg) = D(f) � D(g). Thus,

polarity on polyhedral cones plays a role similar to that of the Fourier transform

in analysis.

4. Let I ∪ J = {1, . . . , d} be a partition and let us define two convex cones

K1,K2 ⊂ R
d by

K1 =
{
(ξ1, . . . , ξd) : ξi ≥ 0 for i ∈ I and ξj > 0 for j ∈ J

}
and

K2 =
{
(ξ1, . . . , ξd) : ξi ≤ 0 for i ∈ I and ξj > 0 for j ∈ J

}
.

Prove that D
(
[K1]
)
= (−1)|J|[K2].

Theorem 1.5 allows us to associate with a valuation μ : C(Rd) −→ R the dual

valuation μ∗ : C(Rd) −→ R defined by the formula: μ∗(g) = μ
(
D(g)
)
. Some

interesting valuations defined on certain subspaces of C(Rd) arise this way. For

example, if A ⊂ R
d is a compact convex set containing the origin in its interior,

then so is A◦ and we can define the dual volume of A by vol∗(A) = vol(A◦). Hence

vol∗ extends to a valuation (linear functional) on the subspace of C(Rd) spanned

by the indicator functions of compact convex sets containing the origin in their

interiors. Some interesting properties of volumes and dual volumes are described

in Problems 3–6 of Section V.1.3.

If K ⊂ R
d is a closed convex cone, then so is K◦. We can define the spherical

angle γ(K) of K as follows: let S
d−1 ⊂ R

d be the unit sphere endowed with the

rotation invariant probability measure ν. We let γ(K) = ν(K ∩ S
d−1). We can

define the exterior spherical angle γ∗(K) of K by γ∗(K) = γ(K◦). In particular,

if d = 2, then γ(K) is the usual angle divided by 2π and γ∗(K) = 0.5 − γ(K),

provided K �= {0},R2. Hence γ∗ extends to a valuation on the subspace of C(Rd)

spanned by the indicator functions of closed convex cones.

Theorem 1.5 implies that if the indicator functions of some non-empty closed

convex sets satisfy a linear relation, then the indicator functions of their polars

satisfy the same linear relation; see Figure 49.

(1.6) Corollary. Let Ai : i = 1, . . . ,m be non-empty closed convex sets in R
d and

let αi : i = 1, . . . ,m be real numbers such that
m∑
i=1

αi[Ai] = 0.
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Then
m∑
i=1

αi[A
◦
i ] = 0.

Proof. We apply the operator D of Theorem 1.5 to both sides of the identity∑m
i=1 αi[Ai] = 0. �

K

K K

K

K
K

K

K

0

0 0 0

0

0

0 0

1

1

2

2

3

3

4

4

o
o

o

o

Figure 49. Example: [K1] + [K2] − [K3] = [K4] and [K◦
1 ] + [K◦

2 ] −
[K◦

3 ] = [K◦
4 ]

2. An Application: Recognizing Points in the Moment

Cone

As an application of the Bipolar Theorem (Theorem 1.2), we show how to decide

whether a given point belongs to the moment cone (see Section II.9). This is yet

another demonstration of the “duality principle” which allows us to obtain some

useful information without extra work.

Let us consider the space R
d+1 of all (d+1)-tuples x = (ξ0, . . . , ξd). Let us fix

the interval [0, 1] ⊂ R (the case of a general interval [α, β] ⊂ R is treated similarly).

Let

g(τ ) = (1, τ, τ2, . . . , τd) for 0 ≤ τ ≤ 1
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be the moment curve and let

M = co
(
g(τ ) : 0 ≤ τ ≤ 1

)

be the corresponding moment cone. Given a point a = (α0, . . . , αd), we want to

decide whether a ∈ M . In other words (cf. Sections II.9, II.10 and III.9), we want

to decide whether there exists a Borel measure μ on the interval [0, 1] with the

prescribed moments: ∫ 1

0

τ i dμ = αi, i = 1, . . . , d.

LetK ⊂ R
d+1 be the cone of polynomials that are non-negative on [0, 1] (see Section

II.11):

K =
{
(γ0, . . . , γd) : γ0 + γ1τ + . . .+ γdτ

d ≥ 0 for all τ ∈ [0, 1]
}
.

(2.1) Lemma. We have

M =
{
x ∈ R

d+1 : 〈x, c〉 ≥ 0 for all c ∈ K
}
.

Proof. We can write

K =
{
c ∈ R

d+1 : 〈c, g(τ )〉 ≥ 0 for all τ ∈ [0, 1]
}

=
{
c ∈ R

d+1 : 〈c, x〉 ≥ 0 for all x ∈ M
}
.

Denoting −K = {−c : c ∈ K} and using Lemma 1.4, we can write −K = M◦.
Since both K and M are closed convex sets containing the origin (cf. Lemma

II.9.3), applying the Bipolar Theorem (Theorem 1.2), we get

M = (−K)◦ =
{
x ∈ R

d+1 : 〈x, c〉 ≥ 0 for all c ∈ K
}
,

which completes the proof. �

PROBLEM.

1. Let H2k,n be the real vector space of all homogeneous polynomials of degree

2k in n real variables x = (ξ1, . . . , ξn). Let us introduce the scalar product 〈f, g〉 as
in Problem 3 of Section I.3.5, thus making H2k,n a Euclidean space. For a vector

c ∈ R
n, let pc(x) = 〈c, x〉2k.

Let

K1 =
{
p ∈ H2k,n : p(x) ≥ 0 for all x ∈ R

n
}

be the cone of non-negative polynomials and let

K2 = co
(
pc ∈ H2k,n : c ∈ R

n
)

be the conic hull of the powers of linear forms. Prove that K◦
1 = −K2 and that

K◦
2 = −K1.
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(2.2) Proposition. Let a = (α0, . . . , αd) be a point.
1. Suppose that d = 2m is even. Then a ∈ M if and only if

m∑
i,j=0

αi+jξiξj ≥ 0 for all x = (ξ0, . . . , ξm) ∈ R
m+1

and

m−1∑
i,j=0

(
αi+j+1 − αi+j+2

)
ξiξj ≥ 0 for all x = (ξ0, . . . , ξm−1) ∈ R

m.

2. Suppose that d = 2m+ 1 is odd. Then a ∈ M if and only if

m∑
i,j=0

αi+j+1ξiξj ≥ 0 for all x = (ξ0, . . . , ξm) ∈ R
m+1

and
m∑

i,j=0

(
αi+j − αi+j+1

)
ξiξj ≥ 0 for all x = (ξ0, . . . , ξm) ∈ R

m+1.

Proof. Suppose that d = 2m. Corollary II.11.3 asserts that the polynomial p(τ ) =
γ0 + γ1τ + . . . + γdτ

d is non-negative on the interval [0, 1] if and only if p can be

written as a convex combination of polynomials q2i , where qi = ξ0+ξ1τ+ . . .+ξmτm

are polynomials of degree m, and polynomials τ (1− τ )q2j , where qj(τ ) = ξ0+ ξ1τ +

. . .+ ξk−1τ
m−1 are polynomials of degree m− 1.

Applying Lemma 2.1, we conclude that a ∈ M if and only if

〈a, c〉 ≥ 0 for all points c = (γ0, . . . , γd) such that

γ0 + γ1τ + . . .+ γdτ
d = (ξ0 + ξ1τ + . . .+ ξmτm)2

for some x = (ξ0, . . . , ξm) ∈ R
m+1 and

〈a, c〉 ≥ 0 for all points c = (γ0, . . . , γd) such that

γ0 + γ1τ + . . .+ γdτ
d = τ (1− τ )(ξ0 + ξ1τ + . . .+ ξm−1τ

m−1)2

for some x = (ξ1, . . . , ξm−1) ∈ R
m−1.

In other words, a ∈ M if and only if

d∑
k=0

αk

( ∑
i+j=k

ξiξj

)
≥ 0 for all x = (ξ0, . . . , ξm) and

d∑
k=0

αk

( ∑
i+j=k−1

ξiξj −
∑

i+j=k−2

ξiξj

)
≥ 0 for all x = (ξ0, . . . , ξm−1).

The first part now follows.
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Suppose that d = 2m+1. Corollary II.11.3 asserts that the polynomial p(τ ) =
γ0 + γ1τ + . . . + γdτ

d is non-negative on the interval [0, 1] if and only if p can be

written as a convex combination of polynomials τq2i and (1 − τ )q2j , where qi, qj =

ξ0 + ξ1τ + . . .+ ξmτm are polynomials of degree m.

Applying Lemma 2.1, we conclude that a ∈ M if and only if

〈c, a〉 ≥ 0 for all points c = (γ0, . . . , γd) such that

γ0 + γ1τ + . . .+ γdτ
d = τ (ξ0 + ξ1τ + . . .+ γmτm)2

for some x = (ξ0, . . . , ξm) ∈ R
m+1 and

〈c, a〉 ≥ 0 for all points c = (γ0, . . . , γd) such that

γ0 + γ1τ + . . .+ γdτ
d = (1− τ )(ξ0 + ξ1τ + . . .+ γmτm)2

for some x = (ξ0, . . . , ξm) ∈ R
m+1. In other words, a ∈ M if and only if

d∑
k=0

αk

( ∑
i+j=k−1

ξiξj

)
≥ 0 for all x = (ξ0, . . . , ξm) and

d∑
k=0

αk

( ∑
i+j=k

ξiξj −
∑

i+j=k−1

ξiξj

)
≥ 0 for all x = (ξ0, . . . , ξm)

and the proof of Part 2 follows. �

The necessary and sufficient condition for a point to lie in the moment cone is

often stated as follows.

(2.3) Corollary. Let a = (α0, . . . , αd) be a point.
1. Suppose that d = 2m is even.

For n = 0, . . . ,m let An be the (n+ 1)× (n+ 1) matrix whose (i, j)-th
entry is αi+j−2:

An =

⎛
⎜⎝

α0 α1 . . . αn

α1 α2 . . . αn+1

. . . . . . . . . . . .
αn αn+1 . . . α2n

⎞
⎟⎠ .

For n = 0, . . . ,m− 1 let A′
n be the (n+ 1)× (n+ 1) matrix whose (i, j)-th

entry is αi+j−1 − αi+j,

A′
n =

⎛
⎜⎝

α1 − α2 . . . αn+1 − αn+2

α2 − α3 . . . αn+2 − αn+3

. . . . . . . . .
αn+1 − αn+2 . . . α2n+1 − α2n+2

⎞
⎟⎠ .

Then a ∈ M if and only if the matrices An for n = 0, . . . ,m and A′
n for

n = 0, . . . ,m− 1 are positive semidefinite.
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2. Suppose that d = 2m+ 1 is odd.

For n = 0, . . . ,m let An be the (n+ 1)× (n+ 1) matrix whose (i, j)-th
entry is αi+j−1,

An =

⎛
⎜⎝

α1 α2 . . . αn+1

α2 α3 . . . αn+2

. . . . . . . . . . . .
αn+1 αn+2 . . . α2n+1

⎞
⎟⎠ .

For n = 0, . . . ,m let A′
n be the (n+1)× (n+1) matrix whose (i, j)-th entry

is αi+j−2 − αi+j−1,

A′
n =

⎛
⎜⎝

α0 − α1 . . . αn − αn+1

α1 − α2 . . . αn+1 − αn+2

. . . . . . . . .
αn − αn+1 . . . α2n − α2n+1

⎞
⎟⎠ .

Then a ∈ M if and only if the matrices An and A′
n for n = 0, . . . ,m are

positive semidefinite.

Proof. Follows from Proposition 2.2. �

PROBLEM.

1. Draw a picture of M and check the conditions of Corollary 2.3 when d = 2.

3. Duality of Vector Spaces

In this section, we begin to introduce the general framework of duality. We define

it first for vector spaces and extend to topological vector spaces in the next section.

We start with a key definition.

(3.1) Definition. Let E and F be real vector spaces. A non-degenerate bilinear

form 〈〉 : E × F −→ R is called a duality of E and F .

In other words, for each e ∈ E and each f ∈ F , a real number 〈e, f〉 is defined
such that

〈α1e1 + α2e2, f〉 = α1〈e1, f〉+ α2〈e2, f〉 and

〈e, α1f1 + α2f2〉 = α1〈e, f1〉+ α2〈e, f2〉

for all e, e1, e2 ∈ E, for all f, f1, f2 ∈ F and for all α1, α2 ∈ R (that is, 〈〉 is a

bilinear form). Moreover,

if 〈e, f〉 = 0 for all e ∈ E, then f = 0 and

if 〈e, f〉 = 0 for all f ∈ F, then e = 0

(that is, 〈〉 is non-degenerate).

Next, we list our main examples.
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(3.2) Examples.

(3.2.1) Euclidean spaces. Let E = R
d, let F = R

d and let

〈x, y〉 =
d∑

i=1

ξiηi, where x = (ξ1, . . . , ξd) and y = (η1, . . . , ηd).

(3.2.2) Spaces of symmetric matrices. Let E = F = Symn be the space of n × n
symmetric matrices (see Section II.12.1) and let

〈A,B〉 = tr(AB) =

n∑
i,j=1

αijβij , where A = (αij) and B = (βij).

Of course, this can be considered as a particular case of (3.2.1).

(3.2.3) Spaces L1 and L∞. Let E = L1[0, 1], let F = L∞[0, 1] (see Section III.5.1)

and let

〈f, g〉 =
∫ 1

0

f(τ )g(τ ) dτ, where f ∈ L1[0, 1] and g ∈ L∞[0, 1].

Similarly, one can define dualities of Lp(X,μ) and Lq(X,μ) with 1/p+1/q = 1 and

a space X with a measure μ.

(3.2.4) Spaces of continuous functions and spaces of signed measures.

Let E = C[0, 1] be the space of all continuous functions on the interval [0, 1],
let F = V [0, 1] be the space of signed Borel measures (see Section III.8.1) and let

〈f, μ〉 =
∫ 1

0

f dμ, where f ∈ C[0, 1] and μ ∈ V [0, 1].

Similarly, one can consider a more general duality of C(X) and V (X) for a compact

metric space X.

PROBLEMS.

1◦. Check that (3.2.1)–(3.2.4) are indeed dualities.

2. Prove that there is no duality with E = R
n and F = R

m, where n �= m.

3◦. Let E = R∞ be the vector space of all sequences x = (ξi : i ∈ N) of real

numbers such that all but finitely many ξi’s are 0 and let F = R
∞ be the space of

all sequences x = (ξi : i ∈ N) of real numbers. Let

〈x, y〉 =
∞∑
i=1

ξiηi, where x = (ξi) ∈ R∞ and y = (ηi) ∈ R
∞.

Note that the sum is well defined since it contains only finitely many non-zero

terms. Prove that 〈〉 is a duality.

4◦. Let 〈〉1 : E1 × F1 −→ R and 〈〉2 : E2 × F2 −→ R be dualities. Let

E = E1 ⊕ E2 and let F = F1 ⊕ F2. Prove that 〈〉 : E × F −→ R defined by

〈e1 + e2, f1 + f2〉 = 〈e1, f1〉1 + 〈e2, f2〉2 is a duality.

We introduce another crucial definition.
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(3.3) Definition. Let 〈〉1 : E1 × F1 −→ R and 〈〉2 : E2 × F2 −→ R be dualities

of vector spaces. Let A : E1 −→ E2 and A∗ : F2 −→ F1 be linear transformations.

We say that A∗ is dual (also called adjoint) to A provided

〈
A(e), f

〉
2
=
〈
e, A∗(f)

〉
1

for all e ∈ E1 and f ∈ F2.

PROBLEMS.

1◦. Prove that if a dual linear transformation A∗ exists, it is necessarily unique.

2◦. Let 〈〉1 : Rn × R
n −→ R and 〈〉2 : Rm × R

m −→ R be the dualities of

Example 3.2.1. Let us choose the standard bases in R
n and R

m. Prove that the

matrix of the dual linear transformation A∗ : Rm −→ R
n is the transpose of the

matrix of the transformation A : Rn −→ R
m.

3◦. Let 〈〉1 : E1 × F1 −→ R be a duality of vector spaces and let 〈〉2 : Rm ×
R

m −→ R be the duality of Example 3.2.1. Let us fix some f1, . . . , fm ∈ F and let

A : E1 −→ R
m be a linear transformation defined by

A(e) =
(
〈e, f1〉1, . . . , 〈e, fm〉1

)
for all e ∈ E1.

Prove that the transformation A∗ : Rm −→ F1 defined by

A∗(x) = ξ1f1 + . . .+ ξmfm, where x = (ξ1, . . . , ξm)

is dual to A.

One can define polarity in this general framework.

(3.4) Polarity. Let 〈〉 : E ×F −→ R be a duality of vector spaces. Let A ⊂ E be

a non-empty set. The set A◦ ⊂ F ,

A◦ =
{
f ∈ F : 〈e, f〉 ≤ 1 for all e ∈ A

}
,

is called the polar of A. Similarly, if A ⊂ F is a non-empty set, the set A◦ ⊂ E,

A◦ =
{
e ∈ E : 〈e, f〉 ≤ 1 for all f ∈ A

}
,

is called the polar of A.

Many properties of polars in Euclidean space are extended in a straightforward

way to the general situation of spaces in duality.

PROBLEMS.

Let 0E be the origin of E and let 0F be the origin of F .

1◦. Prove that the polar A◦ ⊂ F (resp. A◦ ⊂ E) of a non-empty set A ⊂ E
(resp. A ⊂ F ) is a convex set containing the origin 0F (resp. 0E).
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2◦. Prove that E◦ = {0F }, {0E}◦ = F , F ◦ = {0E} and that {0F }◦ = E.

3◦. Prove that if A ⊂ B, then B◦ ⊂ A◦.

4◦ Prove that
(⋃

i∈I Ai

)◦
=
⋂

i∈I A
◦
i .

5◦. Let A be a set and let α �= 0 be a number. Prove that (αA)◦ = α−1A◦.

6◦. Let L ⊂ E be a subspace. Prove that

L◦ =
{
f ∈ F : 〈e, f〉 = 0 for all e ∈ L

}

and similarly for subspaces L ⊂ F .

7◦. Let K ⊂ E be a convex cone. Prove that

K◦ =
{
f ∈ F : 〈e, f〉 ≤ 0 for all e ∈ K

}

and similarly for cones K ⊂ F .

8◦. Prove that A ⊂ (A◦)◦.

4. Duality of Topological Vector Spaces

There is a standard way to introduce topology from a duality.

(4.1) The topology of a duality. Let 〈〉 : E × F −→ R be a duality. We can

make E and F topological vector spaces in the following way. A basic open set
U ⊂ E is a set of the type

U =
{
e ∈ E : αi < 〈e, fi〉 < βi for i = 1, . . . ,m

}
,

where f1, . . . , fm ∈ F are some vectors and α1, β1, . . . , αm, βm ∈ R are some num-

bers. An open set in E is the union of some basic open sets. Similarly, a basic open
set W ⊂ F is a set of the type

W =
{
f ∈ F : αi < 〈f, ei〉 < βi for i = 1, . . . ,m

}
,

where e1, . . . , em ∈ E are some vectors and α1, β1, . . . , αm, βm ∈ R are some num-

bers. An open set in F is a union of some basic open sets.

We call this topology the weak topology of the duality.

PROBLEMS.

1◦. Check that in the weak topology of the duality, E and F become locally

convex topological vector spaces.

2. Prove that in Examples 3.2.1 and 3.2.2, the weak topology of the duality

coincides with the standard topology in R
d and Symn, respectively.

3◦. Prove that in Examples 3.2.3 and 3.2.4 the weak topology of the duality in

the space F is the weak∗ topology.
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4. Let V be a vector space and let φ, φ1, . . . , φm : V −→ R be linear functionals

such that φ(x) = 0 whenever φ1(x) = . . . = φm(x) = 0. Prove that φ = α1φ1 +

. . .+ αmφm for some α1, . . . , αm ∈ R.

Hint: Consider the linear transformation

Φ : V −→ R
m, Φ(x) =

(
φ1(x), . . . , φm(x)

)
.

Prove that there is a linear functional ψ : Rm −→ R, such that φ(x) = ψ
(
Φ(x)
)
for

all x ∈ V . Now use that ψ(y) is a linear combination of the coordinates of y.

5. Let 〈〉1 : E1 × F1 −→ R and 〈〉2 : E2 × F2 −→ R be dualities. Let

E = E1 ⊕ E2 and F = F1 ⊕ F2. Let us define a duality 〈〉 : E × F −→ R, where

〈e1 + e2, f1 + f2〉 = 〈e1, f1〉1 + 〈e2, f2〉2 as in Problem 4 of Section 3.2. Prove that

the weak topology of the duality 〈〉 is the direct product of the topologies defined

by the dualities 〈〉1 and 〈〉2; cf. Section III.2.1.

The next result underlines a perfect symmetry between spaces in duality.

(4.2) Theorem. Let 〈〉 : E × F −→ R be a duality and let us make E and F
topological vector spaces by introducing the weak topology of the duality 〈〉.

Then for every f ∈ F the function φ(e) = 〈e, f〉 is a continuous linear func-
tional φ : E −→ R and for every e ∈ E the function ψ(f) = 〈e, f〉 is a continu-
ous linear functional ψ : F −→ R. Moreover, every continuous linear functional
φ : E −→ R can be written as φ(e) = 〈e, f〉 for some unique f ∈ F and every
continuous linear functional ψ : F −→ R can be written as ψ(f) = 〈e, f〉 for some
unique e ∈ E.

Proof. Let us prove that φ(e) = 〈e, f〉 is a continuous linear functional φ : E −→
R. Clearly, φ is linear. Let us choose e0 ∈ E and ε > 0. Let α = φ(e0) = 〈e0, f〉
and let

U =
{
e ∈ E : α− ε < 〈e, f〉 < α+ ε

}
.

Then U is a (basic) neighborhood of e0 and for every e ∈ U we observe that

|φ(e) − φ(e0)| < ε. Hence φ is continuous at e0. Since e0 was arbitrary, φ is

continuous. Similarly, we prove that the function ψ : F −→ R defined by ψ(f) =
〈e, f〉 for some fixed e ∈ E is linear and continuous.

Let φ : E −→ R be a continuous linear functional. In particular, φ is continuous

at e = 0. This implies that there exists a neighborhood U of 0 such that |φ(x)| < 1

for all x ∈ U . We can choose U to be a basic open set

U =
{
x ∈ E : αi < 〈x, fi〉 < βi for i = 1, . . . ,m

}
,

where αi < 0 < βi and fi ∈ F for i = 1, . . . ,m. Let us choose an ε > 0. Since φ is

linear, for any

x ∈ εU =
{
x ∈ E : εαi < 〈x, fi〉 < εβi for i = 1, . . . ,m

}
,
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we have |φ(x)| < ε. Let

L =
{
x ∈ E : 〈x, fi〉 = 0 for i = 1, . . . ,m

}

be a subspace in E. We have L ⊂ εU for any ε > 0. Therefore, |φ(x)| < ε for all

x ∈ L and any ε > 0. Hence φ(x) = 0 for any x ∈ L. In other words, φ(x) = 0

provided φi(x) = 〈x, fi〉 = 0 for i = 1, . . . ,m. Problem 4 of Section 4.1 implies

that φ can be written as a linear combination φ = α1φ1 + . . . + αmφm. In other

words, φ(e) = 〈e, f〉, where f = α1f1 + . . .+ αmfm. Similarly, we prove that every

continuous linear functional ψ : F −→ R can be written as ψ(f) = 〈e, f〉 for some

fixed e ∈ E.

It remains to show that representations φ = 〈·, f〉 and ψ = 〈e, ·〉 are unique.

Indeed, suppose that there are two vectors f1, f2 ∈ F such that φ(e) = 〈e, f1〉 =

〈e, f2〉 for all e ∈ E. Then 〈e, f1 − f2〉 = 0 for all e ∈ E and since the bilinear

form is non-degenerate, we must have f1 − f2 = 0 and f1 = f2. The uniqueness of

representations for linear functionals ψ : F −→ R is proved similarly. �

Theorem 4.2 prompts the following definition.

(4.3) Definition. Let E and F be topological vector spaces. A non-degenerate

bilinear form 〈〉 : E × F −→ R is called a duality of E and F if the following

conditions are satisfied:

• for every f ∈ F the linear functional φ : E −→ R defined by φ = 〈·, f〉 is

continuous and every continuous linear functional φ : E −→ R can be written as

φ = 〈·, f〉 for some unique f ∈ F

and

• for every e ∈ E the linear functional φ : F −→ R defined by φ = 〈e, ·〉 is

continuous and every continuous linear functional φ : E −→ R can be written as

φ = 〈e, ·〉 for some unique e ∈ E.

PROBLEMS.

1. Let 〈〉1 : E1 × F1 −→ R and 〈〉2 : E2 × F2 −→ R be dualities of topological

vector spaces. Let A : E1 −→ E2 be a continuous linear transformation. Prove

that there exists a dual transformation A∗ : F2 −→ F1.

Hint: Let us choose a vector f ∈ F2. Then φ(e) = 〈A(e), f〉2 is a continuous

linear functional φ : E1 −→ R and hence can be written in the form φ(e) = 〈e, f ′〉
for some f ′ ∈ F1. Let A

∗(f) = f ′.

2◦. Let 〈〉 : E × F −→ R be a duality of topological vector spaces. Prove that

the polar of a set A ⊂ E,F is a closed set.

3. Let 〈〉 : E×F −→ R be a duality of topological locally convex vector spaces.

Let A ⊂ E,F be a closed convex set containing the origin. Prove that (A◦)◦ = A
(Bipolar Theorem).

4◦. Let 〈〉1 : E1 × F1 −→ R and 〈〉2 : E2 × F2 −→ R be dualities of topological

vector spaces. Let us introduce the topology of the direct product in E = E1 ⊕E2

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



160 IV. Polarity, Duality and Linear Programming

and F = F1 ⊕ F2. Prove that 〈〉 : E × F −→ R,

〈e1 + e2, f1 + f2〉 = 〈e1, f1〉1 + 〈e2, f2〉2,

is a duality of E and F .

5. Ordering a Vector Space by a Cone

We introduce a structure in a vector space which generalizes the concept of a system

of linear inequalities in Euclidean space.

(5.1) Cones and orders. Let V be a (topological) vector space and let K ⊂ V
be a convex cone. The cone K defines an order on V as follows: we say that x ≤ y
(sometimes we write x ≤K y) provided y − x ∈ K. Similarly, we write x ≥ y
provided x− y ∈ K. Thus, K =

{
x ∈ E : x ≥ 0

}
.

PROBLEMS.

Let V be a vector space, let K ⊂ V be a convex cone and let ≤ be the corre-

sponding order on V .

1◦. Prove that x ≥ x for any x ∈ V .

2◦. Prove that if x ≤ y and y ≤ z, then x ≤ z.

3◦. Prove that if x ≤ y and α ≥ 0, then αx ≤ αy.

4◦. Prove that if x1 ≤ y1 and x2 ≤ y2, then x1 + x2 ≤ y1 + y2.

5◦. Suppose that the cone K does not contain straight lines. Prove that if

x ≤ y and y ≤ x, then x = y.

6◦. Suppose that K = {0}. Prove that x ≤ y if and only if x = y. Suppose

that K = V . Prove that x ≤ y for any two x, y ∈ V .

7◦. Suppose that V is a topological vector space and that K ⊂ V is a closed

cone. Prove that the order ≤ is continuous: if {xn} and {yn} are two sequences

such that x = limn−→∞ xn and y = limn−→∞ yn and xn ≤ yn for all n, then x ≤ y.

Here are our main examples of cones and associated orders.

(5.2) Examples.

(5.2.1) Euclidean space. Let V = R
d and let

R
d
+ =
{
(ξ1, . . . , ξd) : ξi ≥ 0 for i = 1, . . . , d

}
.

Consequently, x ≤ y if ξi ≤ ηi for i = 1, . . . , d, where x = (ξ1, . . . , ξd) and

y = (η1, . . . , ηd).

(5.2.2) Symmetric matrices. Let V = Symn be the space of all n × n symmetric

matrices and let

S+ =
{
X ∈ Symn : X is positive semidefinite

}
.
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Consequently, X ≤ Y if Y −X is a positive semidefinite matrix.

(5.2.3) Spaces L1 and L∞. For V = L1[0, 1] (see Section III.5.1), we let

L1
+ =
{
f ∈ L1[0, 1] : f(τ ) ≥ 0 for almost all τ ∈ [0, 1]

}
.

Similarly, for V = L∞[0, 1], we let

L∞
+ =
{
f ∈ L∞[0, 1] : f(τ ) ≥ 0 for almost all τ ∈ [0, 1]

}
.

Hence f ≤ g if and only if f(τ ) ≤ g(τ ) for almost all τ ∈ [0, 1].

(5.2.4) Spaces C[0, 1] and V [0, 1]. Let V = C[0, 1] be the space of all continuous

functions on the interval [0, 1]. We define

C+ =
{
f ∈ C[0, 1] : f(τ ) ≥ 0 for every τ ∈ [0, 1]

}
.

Hence f ≤ g if and only if f(τ ) ≤ g(τ ) for all τ ∈ [0, 1].

Let V = V [0, 1] be the space of all signed Borel measures on the interval [0, 1];
see Section III.8.1. We let

V+ =
{
μ ∈ V [0, 1] :

∫ 1

0

f dμ ≥ 0 for every f ∈ C+

}
.

In other words, the cone V+ consists of all positive linear functionals μ : C[0, 1] −→

R; cf. Definition III.8.2. Thus μ ≤ ν if and only if

∫ 1

0

f dμ ≤
∫ 1

0

f dν for all

continuous non-negative functions f .

PROBLEMS.

1◦. Prove that the cones of Examples 5.2.1–5.2.4 are convex cones without

straight lines.

2◦. Prove that the cones of Examples 5.2.1–5.2.4 are closed in the weak topology

defined by the corresponding duality; see Section 4.1.

For a cone K ⊂ V , let K − K =
{
x − y : x ∈ K, y ∈ K

}
; cf. Definition

III.1.1.

3. Prove that K −K = V in Examples 5.2.1–5.2.3.

4. Prove that K −K = V in Example 5.2.4.

5. Let us consider the following lexicographic order � in R
d: we say that x � y,

where x = (ξ1, . . . , ξd) and y = (η1, . . . , ηd), if there is a 1 ≤ k ≤ d such that

ξk > ηk and ξi = ηi for all i < k. Prove that there is a convex cone K ⊂ R
d such

that x � y if and only if x ≥K y. Prove that the cone K is not closed.

For the theory of linear programming that we are going to develop now, it is

more convenient to deal with dual cones rather than with polars.
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(5.3) Definition. Let 〈〉 : E × F −→ R be a duality of vector spaces. Let K ⊂ E
be a convex cone. The cone K∗ ⊂ F ,

K∗ =
{
f ∈ F : 〈e, f〉 ≥ 0 for all e ∈ K

}
,

is called dual to K. Similarly, if K ⊂ F is a convex cone, the cone K∗ ⊂ E,

K∗ =
{
e ∈ E : 〈e, f〉 ≥ 0 for all f ∈ K

}
,

is called dual to K.

PROBLEMS.

1◦. Suppose that E and F are locally convex topological vector spaces and

K ⊂ E,F is a closed convex cone. Prove that (K∗)∗ = K.

Hint: Use Problem 3 of Section 4.3.

2◦. In Example 5.2 prove that

(Rd
+)

∗ = R
d
+,

(S+)
∗ = S+,

(L∞
+ )∗ = L1

+ and (L1
+)

∗ = L∞
+ ,

(C+)
∗ = V+ and (V+)

∗ = C+.

6. Linear Programming Problems

From now on until the end of the chapter we are going to consider various lin-
ear programming problems. Linear programming grew out of a great variety of

pure and applied problems; see [Schr86]. It may be considered as a theory of

linear inequalities, thus extending linear algebra. We adopt the approach of L.V.

Kantorovich who considered linear programming within the general framework of

functional analysis. In this approach, linear inequalities are encoded by cones in

the appropriate spaces; see [AN87]. Sometimes, this general theory is called “conic

linear programming”, “linear programming in spaces with cones” or “linear pro-

gramming in ordered spaces” to distinguish it from the more traditional theory of

linear inequalities in Euclidean space.

It is very useful to consider linear programming problems in pairs. To formulate

a pair of linear programming problems, we need vector spaces in duality ordered

by their respective cones and two linear transformations dual to each other.

(6.1) The problems. Let 〈〉1 : E1×F1 −→ R and 〈〉2 : E2×F2 −→ R be dualities

of vector spaces. We fix a convex cone K1 ⊂ E1 and a convex cone K2 ⊂ E2. Let

K∗
1 ⊂ F1 and K∗

2 ⊂ F2 be the dual cones:

K∗
1 =
{
f ∈ F1 : 〈e, f〉 ≥ 0 for all e ∈ K1

}
and

K∗
2 =
{
f ∈ F2 : 〈e, f〉 ≥ 0 for all e ∈ K2

}
.
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Let A : E1 −→ E2 be a linear transformation. Suppose that A∗ : F2 −→ F1 is the

dual linear transformation, so that

〈Ax, l〉2 = 〈x,A∗l〉1

for all x ∈ E1 and l ∈ F2. As is customary in linear programming, we write simply

Ax and A∗l instead of A(x) and A∗(l).

Let us choose a c ∈ F1 and a b ∈ E2. We consider a pair of linear programming
problems:

(6.1.1) Primal Problem.

Find γ = inf〈x, c〉1
Subject to Ax ≥K2

b and

x ≥K1
0

with a variable x ∈ E1

and

(6.1.2) Dual Problem.

Find β = sup〈b, l〉2
Subject to A∗l ≤K∗

1
c and

l ≥K∗
2
0

with a variable l ∈ F2.

A point x ∈ E1 which satisfies the conditions Ax ≥K2
b and x ≥K1

0 is called

a feasible plan in Problem 6.1.1 or a primal feasible plan. A point l ∈ F2 which

satisfies the conditions A∗l ≤K∗
1
c and l ≥K∗

2
0 is called a feasible plan in Problem

6.1.2 or a dual feasible plan. If Problem 6.1.1 does not have a feasible plan, we

say that γ = +∞. If Problem 6.1.2 does not have a feasible plan, we say that

β = −∞. If the infimum γ in Problem 6.1.1 is attained, a feasible plan x such that

γ = 〈x, c〉1 is called an optimal plan or a primal optimal plan (solution). Similarly, if

the supremum β in Problem 6.1.2 is attained, a feasible plan l such that β = 〈b, l〉2
is called an optimal plan or a dual optimal plan (solution).

PROBLEM.

1. If (K∗
1 )

∗ = K1 and (K∗
2 )

∗ = K2, then the primal and dual problems are

interchangeable. To show that, make the substitution l = −q in Problem 6.1.2:

Find − inf〈b, q〉2
Subject to A∗q ≥K∗

1
−c and

q ≥−K∗
2
0.

Show that the dual problem may be interpreted as the primal Problem 6.1.1.

The following general result is often known under a unifying name of the “Weak

Duality Theorem”.
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(6.2) Theorem.

1. For any primal feasible plan x and any dual feasible plan l, we have

〈x, c〉1 ≥ 〈b, l〉2.

In particular, γ ≥ β (“weak duality”). If 〈x, c〉1 = 〈b, l〉2, then x is a primal
optimal plan, l is a dual optimal plan and γ = β.

2. Suppose that x is a primal feasible plan and that l is a dual feasible plan
such that

〈x, c−A∗l〉1 = 0 and 〈Ax− b, l〉2 = 0.

Then x is a primal optimal plan, l is a dual optimal plan and γ = β (“op-
timality criterion”).

3. Suppose that x is a primal optimal plan, l is a dual optimal plan so that
〈x, c〉1 = γ and 〈b, l〉2 = β. Suppose that γ = β. Then

〈x, c−A∗l〉1 = 0 and 〈Ax− b, l〉2 = 0

(“complementary slackness”).

Proof. Let us prove Part 1. Since x is a feasible plan in the primal problem,

we have Ax ≥K2
b, that is, Ax − b ∈ K2. Since l is a feasible plan in the dual

problem, we have l ≥K∗
2
0, that is, l ∈ K∗

2 . Therefore, 〈Ax − b, l〉2 ≥ 0 and hence

〈Ax, l〉2 ≥ 〈b, l〉2. On the other hand, 〈Ax, l〉2 = 〈x,A∗l〉1 and hence

〈x,A∗l〉1 ≥ 〈b, l〉2.

Since l is a feasible plan in the dual problem, we have A∗l ≤K∗
1
c, hence c−A∗l ∈ K∗

1 .

Since x is a feasible plan in the primal problem, we have x ≥K1
0, that is, x ∈ K1.

Therefore, 〈x, c−A∗l〉1 ≥ 0 and hence

〈x, c〉1 ≥ 〈x,A∗l〉1.

Finally, we conclude that

〈x, c〉1 ≥ 〈b, l〉2.

If 〈x, c〉1 = 〈b, l〉2, then x has to be a primal optimal plan since for every primal

feasible plan x′ we must have 〈x′, c〉1 ≥ 〈b, l〉2 = 〈x, c〉1. Similarly, l has to be a dual

optimal plan since for every dual feasible plan l′ we must have 〈b, l′〉2 ≤ 〈x, c〉1 =

〈b, l〉2.
To prove Part 2, we note that

〈x, c〉1 = 〈x,A∗l〉1 = 〈Ax, l〉2 = 〈b, l〉2,

which by Part 1 implies that x and l are optimal plans in the primal and dual

problems, respectively.
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To prove Part 3, we observe that in the course of the proof of Part 1, we

established a chain of inequalities

〈x, c〉1 ≥ 〈x,A∗l〉1 = 〈Ax, l〉2 ≥ 〈b, l〉2

for any primal feasible plan x and any dual feasible plan l. Hence if 〈x, c〉1 = 〈b, l〉2,
we must have 〈x, c〉1 = 〈x,A∗l〉1, which proves that 〈x, c−A∗l〉1 = 0 and 〈Ax, l〉2 =
〈b, l〉2, which proves that 〈Ax− b, l〉2 = 0. �

While Theorem 6.2 is very simple and may even seem tautological, it is quite

powerful. By demonstrating a primal feasible plan x, we establish an upper bound

on the optimal value of γ. By demonstrating a dual feasible plan l, we establish a

lower bound for β and hence, by Theorem 6.2, for γ. The difference γ − β is called

the duality gap. The most interesting (and not infrequent) situation is when the

duality gap is zero, that is, when γ = β. In this case, we can estimate the common

optimal value with an arbitrary precision just by demonstrating appropriate primal

and dual feasible plans. If the duality gap is zero and both primal and dual problems

have solutions, the complementary slackness conditions often allow us to extract

some useful information about optimal solutions and, in many cases, provides a way

to find them. We address the situation of the zero duality gap in the next section.

PROBLEMS.

1◦. Suppose that γ = −∞ in Problem 6.1.1. Prove that Problem 6.1.2 does

not have a feasible plan. Similarly, suppose that β = +∞ in Problem 6.1.2. Prove

that Problem 6.1.1 does not have a feasible plan.

2. Let us consider a problem of linear programming in C[0, 1]:

Find γ = inf

∫ 1

0

τx(τ ) dτ

Subject to

∫ 1

0

x(τ ) dτ = 1 and

x(τ ) ≥ 0 for all 0 ≤ τ ≤ 1

in the primal variable x ∈ C[0, 1]. Prove that γ = 0 but that there are no optimal

solutions x ∈ C[0, 1]. Using the duality (3.2.4) between continuous functions and

measures, show that the dual problem is

Find β = supλ

Subject to τ dτ − λ dτ is a non-negative measure on the interval [0, 1]

in the dual variable λ ∈ R. Prove that β = 0 and that λ = 0 is the optimal solution.

3 (D. Gale). Let E1 = R∞, F1 = R
∞ (see Problem 3, Section 3.2), E2 = R

2

and F2 = R
2. Let us consider the following linear programming problem for x =
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(ξi : i ∈ N) ∈ R∞.

Find γ = inf ξ1

Subject to ξ1 +
∞∑
k=2

kξk = 1,

∞∑
k=2

ξk = 0 and

ξk ≥ 0 for k ∈ N.

Interpret the problem:

Find β = supλ1

Subject to λ1 ≤ 1 and

kλ1 + λ2 ≤ 0 for k ≥ 2

as the dual problem with the variable l = (λ1, λ2) ∈ R
2. Prove that (1, 0, . . . , ) is

the primal optimal plan with γ = 1 whereas l = (0, 0) is a dual optimal plan with

β = 0.

7. Zero Duality Gap

We turn our attention to a special situation when the infimum γ in the primal

problem is equal to the supremum β in the dual problem. In this case, we say

that the duality gap is zero or that there is no duality gap. The main objective

of this section is to establish a sufficient criterion for the zero duality gap. We

are going to use some topology now. Thus we assume that 〈〉1 : E1 × F1 −→ R

and 〈〉2 : E2 × F2 −→ R are dualities of locally convex topological vector spaces,

that K1 ⊂ E1 and K2 ⊂ E2 are closed convex cones and that A : E1 −→ E2 is a

continuous linear transformation.

We state the criterion in the special case when K2 = {0}. The general case,

however, can be reduced to this special case; see Problem 1 of Section 7.1 and

Problems 3–4 of Section 7.2.

(7.1) Standard and canonical problems. In the context of Section 6.1, let us

suppose that K2 = {0}, the origin in E2. Hence K∗
2 = F2. To simplify notation,

we denote the cone K1 ⊂ E1 just by K. Hence we get the problems:

(7.1.1) Primal Problem in the Canonical Form.

Find γ = inf〈x, c〉1
Subject to Ax = b and

x ≥K 0

in the primal variable x ∈ E1.

(7.1.2) Dual Problem in the Standard Form.

Find β = sup〈b, l〉2
Subject to A∗l ≤K∗ c

in the dual variable l ∈ F2.
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PROBLEMS.

1◦. Consider Problem 6.1.1. Let us introduce the new spaces E = E1⊕E2 and

F = F1 ⊕ F2 with the duality
〈〉

: E × F −→ R defined by

〈
e1 + e2, f1 + f2

〉
= 〈e1, f1〉1 + 〈e2, f2〉2;

cf. Problem 4 of Section 3.2. Let K = K1 ×K2 ⊂ E. Let ĉ = (c, 0) ∈ E and let us

define a transformation Â : E −→ E2 by Â(u, v) = Au− v for u ∈ E1 and v ∈ E2.

Show that Problem 6.1.1 is equivalent to the following problem in the canonical

form:

Find γ = inf〈x, ĉ〉
Subject to Âx = b and

x ≥K 0.

Prove that the dual to the above problem is equivalent to Problem 6.1.2.

2◦. Let 〈〉 : E × F −→ R be a duality and let f1, . . . , fm ∈ F1 be vectors. Let

c ∈ F1 be a vector and let β1, . . . , βm be real numbers. Let K ⊂ E be a cone.

Consider the linear programming problem:

Find γ = inf〈x, c〉
Subject to 〈x, fi〉 = βi for i = 1, . . . ,m and

x ≥K 0.

Interpret the problem:

Find β = sup

m∑
i=1

βiλi

Subject to

d∑
i=1

λifi ≤K∗ c

with real variables (λ1, . . . , λm) as the dual problem.

Given a duality 〈〉 : E×F −→ R of topological vector spaces, we can extend it

to the duality between E ⊕ R and F ⊕ R by letting

〈
(e, α1), (f, α2)

〉
= 〈e, f〉+ α1α2;

cf. Problem 4 of Section 4.3. We give E ⊕ R and F ⊕ R the usual topology of the

direct product; cf. Section III.2.1.

We are going to establish a sufficient condition for the duality gap in Problems

7.1.1–7.1.2 to be zero. To this end, let us define the linear transformation Â :

E1 −→ E2 ⊕ R by Â(x) =
(
Ax, 〈x, c〉1

)
. We are interested in the image Â(K) of

the cone K.
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(7.2) Theorem (“zero duality gap”). Suppose that the cone

Â(K) =
{(

Ax, 〈x, c〉1
)
: x ∈ K

}

is closed in E2 ⊕ R and that there is a primal feasible plan x. Then γ = β. If
γ > −∞, then there is a primal optimal plan x.

Proof. If γ = −∞, then there are no dual feasible plans l (see Problem 1, Section

6.2) and hence β = −∞. Therefore, we can assume that γ > −∞.

In the space E2 ⊕ R, let us consider the straight line L = (b, τ ), where

−∞ < τ < +∞. Then the intersection L∩Â(K) is a closed set of points
(
b, 〈x, c〉1

)
,

where x is a primal feasible plan; see Figure 50. Since there are primal feasible plans

and the objective function is bounded from below, this set is a closed bounded in-

terval or a closed ray bounded from below. Therefore, there is a primal feasible

plan x such that 〈x, c〉1 = γ. Such an x will be a primal optimal plan.

L

0

A ( K )^

(b ,

(b , )

� )

��	��

Figure 50

By Part 1 of Theorem 6.2, γ ≥ β. Let us prove that for any ε > 0 there is a

dual feasible plan l such that 〈b, l〉2 ≥ γ− ε. This would imply that β ≥ γ− ε, and,
therefore, β = γ. We have

(b, γ − ε) /∈ Â(K).

Since the cone Â(K) is closed, the point (b, γ − ε) can be strictly separated from

Â(K) by a closed hyperplane (Theorem III.3.4). In other words, there exists a pair

(l, σ) ∈ F2 ⊕ R and a number α such that

〈b, l〉2 + σ(γ − ε) > α
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and

〈Ax, l〉2 + σ〈x, c〉1 < α

for all x ∈ K. Choosing x = 0, we conclude that α > 0. Suppose that for some

x ∈ K we have

〈Ax, l〉2 + σ〈x, c〉1 > 0.

SinceK is a cone, choosing a sufficiently large λ > 0, we conclude that the inequality

〈Ax, l〉2 + σ〈x, c〉1 < α

is violated for some x′ = λx ∈ K. Thus we must have that

〈b, l〉2 + σ(γ − ε) > 0

and

〈Ax, l〉2 + σ〈x, c〉1 ≤ 0

for all x ∈ K. In particular, if x0 is a primal optimal plan then 〈x0, c〉1 = γ and

Ax0 = b, so

〈b, l〉2 + σγ ≤ 0.

Therefore, σ < 0 and, by scaling (l, σ), if necessary, we can assume that σ = −1.

Thus we have

〈b, l〉2 − (γ − ε) > 0

and

〈Ax, l〉2 − 〈x, c〉1 = 〈x,A∗l〉1 − 〈x, c〉1 = 〈x,A∗l − c〉1 ≤ 0

for all x ∈ K. Therefore, c − A∗l ∈ K∗, that is, A∗l ≤K∗ c. Hence we conclude

that l is a dual feasible plan and that 〈b, l〉2 > γ − ε. �

Modifying and relaxing some of the conditions of Theorem 7.2, one can get

some other useful criteria for the zero duality gap, as stated in the problems be-

low. Problems 1–2 concern linear programming problems 7.1 in the standard and

canonical forms whereas problems 3–4 deal with the general linear programming

problems 6.1.

PROBLEMS.

1. Suppose that there is a primal feasible plan, that γ > −∞ and that for every

ε > 0 there is a neighborhood U ⊂ E2⊕R of (b, γ− ε) such that U ∩ Â(K) = ∅; see
Figure 51. Prove that there is no duality gap. Sometimes, this condition is referred
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to as the stability condition.

L

0

A ( K )^

(b ,

(b , )

� )

��	��
U

Figure 51

2. Suppose that there is a primal feasible plan x0 and a neighborhood W
of the origin in E1 such that x0 + W ⊂ K1 and U = AW =

{
Aw : w ∈ W

}
is a

neighborhood of the origin in E2. Prove that there is no duality gap. This condition

is known as the interior point or Kuhn-Tucker condition.

Hint: Use Problem 1. Without loss of generality, we may suppose that γ > −∞.

For an ε > 0, choose a point (b, γ − ε) /∈ Â(K). Without loss of generality, we may

suppose that for some number s we have |〈x, c〉1| < s for all x ∈ x0 +W . Choose

δ > 0 such that δ(|s| + |γ|) < ε/2. Choose a neighborhood W0 ⊂ W of the origin

such that W0 = −W0 and δ−1W0 ⊂ W . Let U0 = AW0.

Together with (7.1.1), for an arbitrary u ∈ U0 consider two problems:

Find γ+ = inf〈x, c〉1
Subject to Ax = b+ u and

x ≥K 0

and

Find γ− = inf〈x, c〉1
Subject to Ax = b− u and

x ≥K 0.

Prove that γ ≤ (γ++γ−)/2 and that γ−, γ+ ≤ γ+ε/2. Deduce that γ+, γ− ≥ γ−ε/2

and construct a neighborhood of (b, γ − ε) which does not intersect Â(K).
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The next two exercises address the general linear programming problems 6.1.

In Problems 6.1, let us suppose that 〈〉1 and 〈〉2 are dualities of locally con-

vex topological vector spaces, that K1 and K2 are closed convex cones and that

A : E1 −→ E2 is a continuous linear transformation.

3. Let us consider the cone K ⊂ E2 ⊕ R,

K =
{(

Ax− y, 〈x, c〉1
)
: x ∈ K1, y ∈ K2

}
.

Prove that if K is closed in E2⊕R and if there is a primal feasible plan, then γ = β.
Prove that if γ > −∞, then there is a primal optimal plan.

Hint: Use Problem 1 of Section 7.1.

4. Suppose that there is a primal feasible plan x0 ∈ intK1 such that Ax0− b ∈
intK2 (this condition is known as Slater’s condition). Suppose that there is a

primal optimal plan. Prove that there is no duality gap.

Hint: Use Problem 1 of Section 7.1 and Problem 3 above.

If there is a non-zero duality gap, one can try to choose a stronger topology of

E1 and E2 and use larger spaces F1 and F2 hoping that the duality gap disappears

as the spaces grow bigger. Ultimately, we can choose the topology of algebraically

open sets in E1 and E2; see Problems 2-3 of Section III.3.1. In this case, F1 and

F2 become the spaces of all linear functionals on E1 and E2, respectively. Unfortu-

nately, if the spaces F1 and F2 become “too large”, the absence of the duality gap

becomes much less of interest than for “reasonable” F1 and F2. Another possibility

for eliminating the duality gap is to modify the cones. In the finite-dimensional

situation, one can often enforce the interior point condition (see Problems 2 and 4

above) by replacing the cones with their appropriate faces. This trick is much less

viable in the infinite-dimensional situation though.

To be able to use Theorem 7.2, we should be able to prove that the image of

a certain cone K under a linear transformation is closed. Theorem I.9.2 provides

us with one important example, that is, when K is a polyhedral cone. To state

another useful result in this direction, we need to recall the definition of a base of

a cone; see Definition II.8.3.

(7.3) Lemma. Let V and W be topological vector spaces, let K ⊂ V be a cone with
a compact convex base and let T : V −→ W be a continuous linear transformation
such that (kerT ) ∩K = {0}. Then T (K) is a closed convex cone in W .

Proof. Let B be the base of K and let C = T (B). Thus C is a compact convex

set in V and 0 /∈ C. Moreover, T (K) = co(C). Hence by Lemma III.2.10, T (K) is

a closed convex cone. �

PROBLEMS.

1. Construct an example of a closed convex cone K ⊂ R
3 with a compact base

and a linear transformation T : R3 −→ R
2 such that T (K) is not closed.
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2. Let C[0, 1] be the space of continuous functions on the interval [0, 1] and let

K =
{
f : f(τ ) ≥ 0 for all τ ∈ [0, 1]

}
be the cone of non-negative functions. Let us

consider the linear transformation T : C[0, 1] −→ R
2 defined by

T (f) =
(
f(0),

∫ 1

0

f(τ ) dτ
)
.

Prove that K is a closed cone, that (kerT )∩K = {0} and that T (K) is not closed.

3∗. This problem assumes some knowledge of the Banach space theory; see

[Co90].

Let V and W be Banach spaces, let K ⊂ V be a closed convex cone and let

T : V −→ W be a continuous linear transformation such that dim(kerT ) < ∞,

imT ⊂ W is a closed subspace and codim(imT ) < ∞. Suppose further that

K ∩ (kerT ) = {0}. Prove that T (K) ⊂ W is a closed convex cone.

4. Let V be a topological vector space and let v1, . . . , vn ∈ V be a finite set of

points. Prove that co
(
v1, . . . , vn

)
is a closed convex cone.

5. Construct an example of two closed convex cones K1,K2 ⊂ R
3 without

straight lines such that K1 +K2 is not closed.

8. Polyhedral Linear Programming

In this section, we consider what is known as “classical” linear programming in

Euclidean space. We call it “polyhedral” linear programming since it deals with

orders defined by polyhedral cones.

(8.1) Problems. We consider problems in canonical/standard forms 7.1. Let

E1 = F1 = R
n and let E2 = F2 = R

m. We consider the standard dualities 〈〉1 and

〈〉2 of Example 3.2.1, which we denote simply by 〈〉 as the usual scalar product in

Euclidean space. Let K = R
n
+ (see Example 5.2.1). Then K∗ = R

n
+ and instead of

writing x ≥K 0 and x ≥K∗ 0, we simply write x ≥ 0. Let A : Rn −→ R
m be a linear

transformation. We can think of A as an m × n matrix. Then A∗ : Rm −→ R
n

is represented by the transposed n × m matrix. Letting x = (ξ1, . . . , ξn), c =

(γ1, . . . , γn), A = (αij), i = 1, . . . ,m, j = 1, . . . , n, and b = (β1, . . . , βm), we get

the following pair of linear programming problems:

(8.1.1) Primal Problem in the Canonical Form.

Find γ = inf

n∑
j=1

γjξj

Subject to

n∑
j=1

αijξj = βi for i = 1, . . . ,m and

ξj ≥ 0 for j = 1, . . . , n

in the primal variables x = (ξ1, . . . , ξn) ∈ R
n.
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(8.1.2) Dual Problem in the Standard Form.

Find β = sup

m∑
i=1

βiλi

Subject to

m∑
i=1

αijλi ≤ γj for j = 1, . . . , n

in the dual variables l = (λ1, . . . , λm) ∈ R
m.

Our main result provides a sufficient criterion for zero duality gap and existence

of optimal plans in Problems 8.1.1-8.1.2.

(8.2) Theorem (“strong duality”). Suppose that there exists a primal feasible
plan. Then γ = β. If, in addition, γ > −∞, then there exist a primal optimal plan
and a dual optimal plan.

Proof. The cone K = R
n
+ is a polyhedron. Therefore, by Theorem I.9.2 the image

Â(K) =
{
(Ax, 〈c, x〉) : x ∈ K

}
is a polyhedron and hence is closed. Theorem 7.2

implies that γ = β and that if γ > −∞, then there is a primal optimal plan.

Let us prove that there is a dual optimal plan. One way to show that is to bring

the dual problem into canonical form, cf. Problem 1 of Section 6.1 and Problem

3 of Section 7.2. Let us introduce “slack” vectors y ∈ R
n and q1, q2 ∈ R

m. Since

every vector l ∈ R
m can be written as a difference q1 − q2 for some q1, q2 ∈ R

m
+ and

inequality A∗l ≤ c is equivalent to A∗l+ y = c and y ≥ 0, we can construct a linear

programming problem in the canonical form, which is equivalent to Problem 8.1.2:

Find β = sup〈b, q1 − q2〉 = − inf〈−b, q1 − q2〉
Subject to A∗(q1 − q2) + y = c and

q1, q2, y ≥ 0.

As we proved above, for linear programs in the canonical form there is an optimal

plan provided −∞ < β < +∞. Thus there exists an optimal solution (q1, q2, y) to
the problem. Therefore, l = q1 − q2 is an optimal plan in Problem 8.1.2. �

PROBLEMS.

1. Suppose that there exists a dual feasible plan. Prove that β = γ. Suppose,

in addition, that β < +∞. Prove that there exist a dual optimal plan and a primal

optimal plan.

2. Construct an example of Problems 8.1.1 and 8.1.2 such that neither has a

feasible plan.
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3. Consider a pair of linear programming problems in the form:

Find γ = inf

n∑
j=1

γjξj

Subject to

n∑
j=1

αijξj ≥ βi for i ∈ I+

n∑
j=1

αijξj = βi for i ∈ I0 and

ξj ≥ 0 for j ∈ J+

in the primal variables x = (ξ1, . . . , ξn) ∈ R
n, where I0 ∪ I+ = {1, . . . ,m} and

J+ ⊂ {1, . . . , n}

and

Find β = sup

m∑
i=1

βiλi

Subject to

m∑
i=1

αijλi ≤ γj for j ∈ J+

m∑
i=1

αijλi = γj for j /∈ J+ and

λi ≥ 0 for i ∈ I+

in the dual variables l = (λ1, . . . , λm) ∈ R
m.

Prove that if there is a feasible plan in one of the problems, then γ = β and if,

in addition, −∞ < β = γ < +∞, then there exist primal and dual optimal plans.

4. Let c0, . . . , cm ∈ R
d be vectors and let 〈ci, x〉 ≤ 0 for i = 0, . . . ,m be

a system of linear inequalities in R
d. The inequality 〈c0, x〉 ≤ 0 is called active

provided there is an x ∈ R
d, such that 〈ci, x〉 ≤ 0 for i = 1, . . . ,m and 〈c0, x〉 > 0.

Prove Farkas Lemma: the inequality 〈c0, x〉 ≤ 0 is not active if and only if c0 =

λ1c1 + . . .+ λmcm for some non-negative λ1, . . . , λm.

Next, we establish polyhedral versions of the optimality criterion and comple-

mentary slackness conditions; cf. Theorem 6.2.

(8.3) Corollary. Suppose there exist a primal feasible plan and a dual feasible
plan. Then there exist a primal optimal plan and a dual optimal plan. Moreover,

1. if x = (ξ1, . . . , ξn) is a primal feasible plan and l = (λ1, . . . , λm) is a dual
feasible plan and

ξj > 0 implies
m∑
i=1

αijλi = γj ,
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then x is a primal optimal plan and l is a dual optimal plan (“optimality
criterion”);

2. if x = (ξ1, . . . , ξn) is a primal optimal plan and l = (λ1, . . . , λm) is a dual
optimal plan, then

ξj > 0 implies

m∑
i=1

αijλi = γj

(“complementary slackness”).

Proof. Follows by Theorem 8.2 and Theorem 6.2. �

PROBLEM.

1. Consider the linear programming problems of Problem 3, Section 8.2. Sup-

pose that x = (ξ1, . . . , ξn) is a primal feasible plan and that l = (λ1, . . . , λm) is a

dual feasible plan. Prove that x is a primal optimal plan and l is the dual optimal

plan if and only if

ξj > 0 implies

m∑
i=1

αijλi = γj for j ∈ J+ and

λi > 0 implies

n∑
j=1

αijξj = βi for i ∈ I+.

(8.4) Example. The Diet Problem. As an illustration of the developed theory,

let us return to the Diet Problem of Example II.4.4. In Problem 8.1.1, we interpret

γj as the unit price of the j-th ingredient, αij as the content of the i-th nutrient

in the j-th ingredient and βi as the target quantity of the i-th nutrient. We are

seeking to find the quantity ξj of the j-th ingredient so as to get a balanced diet of

the minimal possible cost γ.

The dual variable λi, i = 1, . . . ,m, in Problem 8.1.2 can be interpreted as

the unit price of the i-th nutrient. Hence the dual problem can be interpreted as

the problem of assigning prices to the nutrients in a “consistent” way (so that each

ingredient costs at least as much as the nutrients it contains) and the total cost of all

involved nutrients is maximized. Note that the prices λi are allowed to be negative

(“customer incentives” or “bonuses”). Problem 8.1.2 may be interpreted as the

problem faced by a manufacturer of vitamin pills who wants to supply the balanced

diet in pills containing given nutrients and has to compete with a manufacturer

of food. The condition that the package of pills costs not more than the food

ingredient it is supposed to substitute means that the pill manufacturer has a chance

to compete. Corollary 8.3 implies that for each primal optimal plan (ξ1, . . . , ξn)
one can assign costs λi of pills in such a way that whenever ξj > 0 (the diet uses a

positive quantity of the j-th ingredient) we have
∑m

j=1 αijλi = γj (the cost of the

j-th ingredient is exactly the sum of the prices of the nutrients contained in the

ingredient) and vice versa.
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9. An Application: The Transportation Problem

In this section, we consider the Transportation Problem of Section II.7.

We are given a directed graph G = (V,E) with the set V = {1, . . . , n} of

vertices and a set E of m edges i → j. As in Section II.7, we suppose that there

are no loops i → i. To every vertex i a number βi (“demand” if βi > 0, “supply”

if βi < 0 and “transit” if βi = 0) is assigned. To every edge i → j, a non-negative

number γij (the cost per unit of transportation) is assigned. The objective is to

find a feasible flow ξij for all edges (i → j) ∈ E minimizing the total cost of

transportation. Hence the problem is stated as follows:

(9.1) Primal (transportation) problem.

Find γ = inf
∑

(i→j)∈E

γijξij

Subject to
∑

j:(j→i)∈E

ξji −
∑

j:(i→j)∈E

ξij = βi for every vertex i ∈ V

and ξij ≥ 0 for all (i → j) ∈ E.

We observe that Problem 9.1 is a primal problem (8.1.1) in the canonical form.

Hence we obtain the dual problem:

(9.2) Dual problem.

Find β = sup

n∑
i=1

βiλi

Subject to λj − λi ≤ γij for every edge (i → j) ∈ E.

Problem 9.2 has the following interpretation: the variable λi is the price of the

commodity at the i-th vertex. A vector l = (λ1, . . . , λn) of prices is feasible pro-

vided one cannot gain by buying the commodity in one vertex and selling it in

another vertex with the transportation costs taken into account. Thus {λi} may

be interpreted as the prices of the product if we are to open retail shops at the

vertices of the graph. The goal is to assign prices in such a way that the total cost

of the commodity over the whole network is maximized.

PROBLEM.

1◦. Check that Problem 9.2 is indeed dual to Problem 9.1.

(9.3) Corollary. Suppose that there is a primal feasible plan (feasible flow). Then
there is a primal optimal plan (optimal flow) and there is a dual optimal plan. Let
x =
(
ξij : (i → j) ∈ E

)
be a primal feasible plan and let l = (λ1, . . . , λn) be a dual

feasible plan. Then x is a primal optimal plan and l is a dual optimal plan if and
only if

ξij > 0 implies λj − λi = γij .
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Proof. Since the costs γij are non-negative, we conclude that γ > −∞. Moreover,

l = 0 is a dual feasible plan. Hence the result follows by Corollary 8.3. �

Corollary 9.3 suggests an algorithm for solving the Transportation Problem.

The algorithm turns out to be extremely efficient in practice and constitutes a par-

ticular case of a more general simplex method; see Chapters 11 and 12 of [Schr86].

(9.4) A sketch of the algorithm. Proposition II.7.2 (see also Definition II.7.3)

implies that if x = (ξij) is an extreme point of the set of all feasible flows (trans-

portation polyhedron), then the edges i → j, where ξij > 0, form a forest in G.

Suppose that x = (ξij) is a feasible flow. To make our problem simpler, suppose

that the set of edges i → j, where ξij > 0, form a spanning tree T in G, that

is, a tree such that every vertex i of V is a vertex of the tree. Essentially, this

assumption means that the flow is sufficiently non-degenerate.

Let us assign the price λ1 arbitrarily. Then, if i → j is an edge of T and

λi is computed, we compute λj = λi + γij . Thus we compute the prices λi for

i = 1, . . . , n. If the vector l = (λ1, . . . , λn) is a dual feasible plan, then by Corollary

9.3, x is an optimal flow. Otherwise, there is an edge (i → j) ∈ E, i → j /∈ T , such
that λj −λi > γij . This suggests to us to use the edge (i → j) in our shipment plan

(informal justification: if we buy at i, ship to j and sell at j, we make a profit).

a ) b ) c ) 

��� ���

���	��

	�� 	��

j

i

Figure 52. a) locating the edge where λj − λi > γij , b) adjusting the

flow and c) getting a new flow
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Adding the edge to the tree generates a cycle. We change the flow on the edges

of the cycle in such a way that the overall balance is preserved: we increase the

flow on i → j until the flow on some other edge of the cycle drops to 0 (cf. proof

of Proposition II.7.2). We delete the edge and get a new tree T ′ and a new feasible

flow with a smaller total cost (again, we assume that there be a single edge of the

cycle that “dries up”).

To construct an initial solution x, we modify the network by adding a new

vertex 0 with β0 = 0 (transit) and introduce new edges i → 0 if βi < 0 and 0 → i if
βi > 0. We let γ0i and γj0 be very big numbers so that the transportation to/from

vertex 0 should be avoided if at all possible. We observe that if the overall balance

condition
∑n

i=1 βi = 0 is satisfied, then the initial plan ξi0 = −βi, if βi < 0, ξ0i = βi,

if βi > 0 and ξij = 0 otherwise, is a feasible plan. Now the original problem has a

feasible plan if the optimal solution in the modified problem has ξi0 = 0 and ξ0j = 0

for all i and j.

very  large  transportation  costs

Demands Supplies

0

Figure 53. Constructing the initial plan by introducing an extra ver-

tex

PROBLEM.

1. Prove that on every step of the algorithm the cost of the flow indeed de-

creases.

10. Semidefinite Programming

In this section, we consider linear programming problems in the space Symn of n×n
symmetric matrices with respect to the cone S+ of positive semidefinite matrices;
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see Section II.12. This type of linear programming has been known as “semidefinite

programming”; see [VB96].

(10.1) Problems. We consider problems in the canonical/standard forms of Sec-

tion 7.1. Let E1 = F1 = Symn and let E2 = F2 = R
m. We consider the standard

dualities (scalar products)

〈A,B〉1 = tr(AB) =

n∑
i,j=1

αijβij

for symmetric matrices A = (αij) and B = (βij) (cf. Example 3.2.2) and

〈x, y〉2 =

m∑
i=1

ξiηi

for vectors x = (ξ1, . . . , ξm) and y = (η1, . . . , ηm) in R
m (see Example 3.2.1). To

simplify the notation, we denote both scalar products by 〈〉. We fixK = S+ ⊂ Symn

and we write X � Y instead of X ≥K Y for symmetric matrices X and Y . Hence

X � Y means that X − Y is a positive semidefinite matrix.

Recall (Problem 2 of Section 5.3) that K∗ = K. A linear transformation

Symn −→ R
m can be written as X �−→

(
〈A1, X〉, . . . , 〈Am, X〉

)
for some symmet-

ric matrices A1, . . . , Am. The dual linear transformation R
m −→ Symn is defined

by (ξ1, . . . , ξm) �−→ ξ1A1 + . . .+ ξmAm; cf. Problem 3 of Section 3.3.

Let us fix matrices C,A1, . . . , Am ∈ Symn and a set of real numbers β1, . . . , βm.

Hence we arrive at the pair of problems:

(10.1.1) Primal Problem in the Canonical Form.

Find γ = inf〈C,X〉
Subject to 〈Ai, X〉 = βi for i = 1, . . . ,m and

X � 0

in the primal matrix variable X ∈ Symn.

(10.1.2) Dual Problem in the Standard Form.

Find β = sup

m∑
i=1

βiλi

Subject to

m∑
i=1

λiAi � C

in the dual variables (λ1, . . . , λm) ∈ R
m.

PROBLEMS.

1. Let n = 2, m = 1, let C =

(
1 0

0 0

)
, let A1 =

(
0 1

1 0

)
and let β1 = 1.

Prove that γ = β = 0, that λ1 = 0 is the dual optimal plan and that there is no

primal optimal plan.
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2. Let n = 2, m = 1, let C =

(
0 −0.5

−0.5 −1

)
, let A1 =

(
1 1

1 1

)
and let

β1 = 0. Prove that γ = 0, that there exists a primal optimal plan but that there

are no dual feasible plans, so β = −∞.

3◦. Let B be a positive definite n × n matrix. Prove that if X is an n × n
positive semidefinite matrix such that 〈B,X〉 = 0, then X = 0.

Problems 1 and 2 above show that the situation is somewhat different from that

of polyhedral linear programming; cf. Section 8. The following result provides a

sufficient condition for the existence of the primal optimal plan and for the absence

of the duality gap.

(10.2) Proposition. Suppose that there are real numbers α1, . . . , αm and ρ such
that

B = α1A1 + . . .+ αmAm + ρC

is a positive definite matrix and that there is a primal feasible plan. Then γ = β,
and, if γ > −∞, there is a primal optimal plan.

Proof. We use Theorem 7.2. Let us consider the linear transformation

Â : Symn −→ R
m, Â(X) =

(
〈A1, X〉, . . . , 〈Am, X〉, 〈C,X〉

)
.

We claim that ker(Â) ∩ S+ = {0}. Indeed, for every X ∈ ker(Â) we have

〈C,X〉 = 〈A1, X〉 = . . . = 〈Am, X〉 = 0

and hence 〈B,X〉 = 0. Since B is positive definite and X is positive semidefinite,

by Problem 3 of Section 10.1, it follows that X = 0. Since S+ has a compact base

(see Problem 4 of Section II.12.2), by Lemma 7.3, we conclude that Â(S+) is a

closed convex cone in R
m+1. The result now follows by Theorem 7.2. �

PROBLEMS.

1. Suppose that the matrices A1, . . . , Am are linearly independent and that

there exists a positive definite matrix X which is a primal feasible plan. Prove that

there is no duality gap.

Hint: Use Problem 2 of Section 7.2.

2. Suppose that there is a dual feasible plan, that β < +∞ and that there is

no dual optimal plan. Prove that there exists a non-zero vector l = (λ1, . . . , λm)

such that
m∑
i=1

λiAi � 0 and

m∑
i=1

βiλi = 0.

Hint: Choose a sequence of {ln} of dual feasible plans such that

lim
n−→+∞

〈b, ln〉 = β,
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where b = (β1, . . . , βm). Show that we must have ‖ln‖ −→ +∞. Consider the

sequence ln = ln/‖ln‖.
3. Suppose that the matrices A1, . . . , An are linearly independent, that there

is a positive definite matrix X which is a primal feasible plan and that γ > −∞.

Prove that there is a dual optimal plan.

Hint: Use Problems 1 and 2 above and Problem 3 of Section 10.1.

Finally, we discuss the positive semidefinite version of the complementary slack-

ness conditions.

(10.3) Corollary.

1. Suppose that X is a primal feasible plan and l = (λ1, . . . , λm) is a dual
feasible plan. If

〈
X, C −

m∑
i=1

λiAi

〉
= 0,

then X is a primal optimal plan and l is a dual optimal plan (“optimality
criterion”).

2. Suppose that X is a primal optimal plan, l = (λ1, . . . , λm) is a dual optimal
plan and that there is no duality gap. Then

〈
X, C −

m∑
i=1

λiAi

〉
= 0

(“complementary slackness”).

Proof. Follows by Theorem 6.2. �

PROBLEMS.

1. Let X and Y be n× n positive semidefinite matrices such that 〈X,Y 〉 = 0.

Prove that rankX + rankY ≤ n.

2. Let X be a primal optimal plan and let l = (λ1, . . . , λm) be a dual optimal

plan. Suppose that there is no duality gap. Prove that

rank(X) + rank
(
C −

m∑
i=1

λiAi

)
≤ n.

3. Let us call an n×n matrix A = (αij) r-diagonal if αij = 0 unless |i− j| < r;
cf. Problem 5 of Section II.14.3. Suppose that the matrices A1, . . . , Am are r-
diagonal and there exists a positive semidefinite matrix X such that 〈Ai, X〉 = βi

for i = 1, . . . ,m. Prove that there exists a positive semidefinite matrix X such that

〈Ai, X〉 = βi for i = 1, . . . ,m, and, additionally, rankX ≤ r.

Hint: Choose an n× n positive definite matrix C = (γij) such that

γij =

⎧
⎪⎨
⎪⎩

1 if i = j,

ε > 0 if |i− j| = r,

0 elsewhere
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in Problem 10.1.1. Prove that there exists a primal optimal plan X∗ and that there

is no duality gap. Use Problem 2 to show that if there is a dual optimal plan, then

rankX∗ ≤ r. Deduce the general case from that particular case; see [Barv95].

11. An Application: The Clique and Chromatic Numbers

of a Graph

We discuss an application of semidefinite programming to a combinatorial problem.

(11.1) Cliques and colorings. Let G = (V,E) be a graph with the set of vertices

V = {1, . . . , n} and the set of edges E. We assume that the edges are undirected

and that there are no loops or multiple edges. A clique of G is a set of ver-

tices W ⊂ V , such that every two distinct vertices i, j ∈ W are connected by an

edge of the graph: (ij) ∈ E. The largest number of vertices in a clique of G is

called the clique number of G and denoted by ω(G). A k-coloring of G is a map

φ : V −→ {1, . . . , k}, such that φ(i) �= φ(j) if (ij) ∈ E. The smallest k, such that

a k-coloring exists, is called the chromatic number of G and denoted χ(G).

a ) b )

Figure 54. a) a clique, b) a coloring

PROBLEMS.

1◦. Prove that ω(G) ≤ χ(G).

2◦. Let G be the pentagon, that is, a graph with five vertices {1, 2, 3, 4, 5} and

five edges, (12), (23), (34), (45) and (51). Prove that ω(G) = 2 and χ(G) = 3.

Computing or even approximating ω(G) and χ(G) for general graphs is compu-

tationally hard. Surprisingly, there is a way to compute efficiently a number ϑ(G)

such that ω(G) ≤ ϑ(G) ≤ χ(G). This number ϑ(G) was introduced by L. Lovász in

1979 [Lo79] and is now called the Lovász’s theta-function. We do not discuss how

to compute ϑ(G) (see [GLS93] and [Lo86]). Instead, we show that ϑ(G) is the

optimal value in a certain pair of problems of semidefinite programming related by

duality. There is an interesting class of graphs, called perfect graphs, for which we

have ω(G) = ϑ(G) = χ(G); see Section 3.2 of [Lo86].
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(11.2) The primal problem. For 1 ≤ i < j ≤ n, let Aij be the n× n symmetric

matrix whose (i, j)-th and (j, i)-th entries are 1’s and all other entries are 0. Let J
be the n×nmatrix filled by 1’s and let I be the n×n identity matrix. Given a graph

G = (V,E), let us consider the following problem of semidefinite programming.

Find ϑ(G) = sup〈J,X〉 = − inf〈−J,X〉
Subject to 〈Aij , X〉 = 0 for every pair (ij) /∈ E,

〈I,X〉 = 1 and

X � 0

in the primal matrix variable X. In other words, we are seeking to maximize the

sum of the entries of a positive semidefinite matrix X = (xij) of trace 1, provided

xij = 0 if (ij) is not an edge of G.

PROBLEMS.

1◦. Let G1 = (V,E1) and G2 = (V,E2) be graphs with the same vertex set

V and such that E1 ⊂ E2. Prove that ω(G2) ≥ ω(G1), χ(G2) ≥ χ(G1) and

ϑ(G2) ≥ ϑ(G1).

2◦. Let α1, . . . , αk be non-negative numbers such that
∑k

i=1 α
2
i = 1. Prove

that
∑k

i=1 αi ≤
√
k.

It turns out that the value of ϑ(G) is sandwiched between the clique number

and the chromatic number of the graph.

(11.3) Proposition. We have ω(G) ≤ ϑ(G) ≤ χ(G).

Proof. Let W ⊂ V be a clique and let |W | = k. Let x = (ξ1, . . . , ξn), where

ξi =

{
1 if i ∈ W,

0 if i /∈ W.

Let X = (xij), where xij = (ξiξj)/k. Then X is a feasible plan in Problem 11.2

and 〈J,X〉 = k. Therefore, ϑ(G) ≥ 〈J,X〉 = k = |W |. Hence ϑ(G) ≥ ω(G).

Let X = (xij) be a feasible plan in Problem 11.2. Since X is a positive semi-

definite matrix, there exist n vectors v1, . . . , vn in R
n for which X is the Gram

matrix, that is, 〈vi, vj〉 = xij . In particular, 〈J,X〉 = ‖v1 + . . . + vn‖2. Let us

choose a coloring φ : V −→ {1, . . . , k} of G. We observe that if φ(i) = φ(j), then
xij = 0 and hence 〈vi, vj〉 = 0 (henceforth, such an n-tuple of vectors v1, . . . , vn is

called an orthogonal labeling of the graph G). Since trX = 1, we conclude that

n∑
i=1

‖vi‖2 = 1.

For a number (“color”) 1 ≤ j ≤ k, let us define wj by

wj =
∑

i:φ(i)=j

vi.
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Thus wj is the sum of pairwise orthogonal vectors and we have

‖wj‖2 =
∑

i:φ(i)=j

‖vi‖2 and, therefore,

k∑
j=1

‖wj‖2 = 1.

Also, we observe that

k∑
j=1

wj =

n∑
i=1

vi and hence 〈J,X〉 =
∥∥

k∑
j=1

wj

∥∥2.

Now

〈J,X〉 =
∥∥

k∑
j=1

wj

∥∥2 ≤
( k∑
j=1

‖wj‖
)2

.

Denoting αj = ‖wj‖, we conclude that

〈J,X〉 ≤
( k∑
j=1

αj

)2
for some αj ≥ 0 such that

k∑
j=1

α2
j = 1.

Using Problem 2 of Section 11.2, we conclude that 〈J,X〉 ≤ k and hence ϑ(G) ≤
χ(G). �

Writing the dual to Problem 11.2, we get

(11.4) The dual problem.

Find − supλ0 = inf −λ0

Subject to λ0I +
∑

(ij)/∈E

λijAij � −J

in the dual real variables λ0 and λij with (ij) /∈ E. It is convenient to make a

substitution τ = −λ0 and rewrite the problem as

Find β = inf τ

Subject to τI − J −
∑

(ij)/∈E

λijAij � 0.

We note that the matrix τI −
(
J +
∑

(ij)/∈E

λijAij

)
is positive semidefinite if and

only if the largest eigenvalue of the matrix
(
J +
∑

(ij)/∈E

λijAij

)
does not exceed τ .

Hence the dual problem is equivalent to finding the infimum β of the maximum

eigenvalue of a symmetric matrix Y = (ηij) such that ηij = 1 if (ij) ∈ E or i = j
and all other entries of Y are arbitrary.

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



12. Linear Programming in L∞ 185

(11.5) Proposition. We have β = ϑ(G).

Proof. By Proposition 10.2, we conclude that there is no duality gap as soon as

some linear combination of the constraint matrices in the primal problem is positive

definite. Since the identity matrix I is one of the constraint matrices in Problem

11.2, the result follows. �

PROBLEMS.

1. Prove that there exist a primal optimal plan and a dual optimal plan.

2. LetG be the pentagon; see Problem 2 of Section 11.1. Prove that ϑ(G) =
√
5.

3. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Assuming that

V1 ∩ V2 = ∅, let us define the direct sum G = (V,E) as the graph with V = V1 ∪ V2

and E = E1 ∪ E2. Prove that ϑ(G) = ϑ(G1) + ϑ(G2).

4. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Let us define their

direct product as the graph G = (V,E) with V = V1×V2 such that
(
(i1, i2), (j1, j2)

)
is an edge of G if and only if (i1, j1) is an edge of G1 and (i2, j2) is an edge of G2 or

i1 = j1 and (i2, j2) is an edge of G2 or i2 = j2 and (i1, j1) is an edge of G1. Prove

that ϑ(G) = ϑ(G1)ϑ(G2).

12. Linear Programming in L∞

In this section, we discuss our first instance of infinite-dimensional linear program-

ming. We consider the following optimization problem.

(12.1) Primal problem.

Find γ = inf

∫ 1

0

g(τ )u(τ ) dτ

Subject to

∫ 1

0

fi(τ )u(τ ) dτ = βi for i = 1, . . . ,m and

0 ≤ u(τ ) ≤ 1 for almost all τ ∈ [0, 1].

Here g, f, f1, . . . , fm ∈ L1[0, 1] are given functions, β1, . . . , βm are given real num-

bers and u ∈ L∞[0, 1] is a variable. As we discussed in Section III.6, certain

problems of linear optimal control can be stated in the form of Problem 12.1.

There are various ways to write Problem 12.1 as a linear programming problem.

We discuss one of them below.

Let E1 = L∞[0, 1] ⊕ L∞[0, 1]. Hence E1 consists of ordered pairs (u, v) of

functions from L∞[0, 1]. Let F1 = L1[0, 1] ⊕ L1[0, 1]. We define the duality 〈〉1 :

E1 × F1 −→ R by

〈
(u, v), (a, b)

〉
1
=

∫ 1

0

u(τ )a(τ ) + v(τ )b(τ ) dτ ;
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cf. Example 3.2.3. Let us choose E2 = F2 = R
m+1 with the standard duality of

Example 3.2.1. Let us define the cone K ⊂ E1 as follows:

(12.1.1)
K =
{
(u, v) : u(τ ), v(τ ) ≥ 0 for almost all τ and

u(τ ) + v(τ ) = constant function for almost all τ
}
.

We define a linear transformation A : E1 −→ F1 by

A(u, v) =

(∫ 1

0

f1(τ )u(τ ) dτ, . . . ,

∫ 1

0

fm(τ )u(τ ) dτ,

∫ 1

0

u(τ ) + v(τ ) dτ

)
.

Letting

c = (g, 0) and b = (β1, . . . , βm, 1),

we restate Problem 12.1 as a primal problem in the canonical form:

Find γ = inf〈x, c〉1
Subject to Ax = b and

x ≥K 0

in the primal variable x = (u, v) ∈ L∞[0, 1]⊕ L∞[0, 1].

To interpret the dual problem,

Find β = sup〈b, p〉
Subject to A∗p ≤K∗ c,

we need to find the dual cone K∗ and the dual transformation A∗.

(12.2) Lemma. We have

K∗ =
{(

x+ h, y + h
)
: x(τ ), y(τ ) ≥ 0 for almost all τ and

∫ 1

0

h(τ ) dτ ≥ 0
}
,

where x, y, h ∈ L1[0, 1].

Proof. Suppose that x(τ ), y(τ ) ≥ 0 for almost all τ and that

∫ 1

0

h(τ ) dτ ≥ 0. Let

us pick a point (u, v) ∈ K. Thus u(τ ), v(τ ) ≥ 0 and for some constant δ ≥ 0 we

have u(τ ) + v(τ ) = δ for almost all τ . Then

〈
(x+ h, y + h), (u, v)

〉
1
=

∫ 1

0

x(τ )u(τ ) + y(τ )v(τ ) + δh(τ ) dτ ≥ 0,

from which we conclude that (x+ h, y + h) ∈ K∗.
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On the other hand, suppose that (x1, y1) ∈ K∗. Let

h(τ ) = min
{
x1(τ ), y1(τ )

}
and let x = x1 − h and y = y1 − h.

Clearly, x(τ ), y(τ ) ≥ 0 and x1 = x+ h, y1 = y + h. Thus it remains to show that
∫ 1

0

h(τ ) dτ =

∫ 1

0

min
{
x1(τ ), y1(τ )

}
dτ

=

∫

τ :x1(τ)≤y1(τ)

x1(τ ) dτ +

∫

τ :y1(τ)>x1(τ)

y1(τ ) dτ ≥ 0.(12.2.1)

Since (x1, y1) ∈ K∗, we must have
∫ 1

0

x1(τ )u(τ ) dτ +

∫ 1

0

y1(τ )v(τ ) dτ ≥ 0

for any two functions 0 ≤ u(τ ), v(τ ) ≤ 1 such that u(τ ) + v(τ ) = 1. Choosing an

arbitrary 0 ≤ u(τ ) ≤ 1, we get
∫ 1

0

x1(τ )u(τ ) dτ +

∫ 1

0

y1(τ )
(
1− u(τ )

)
dτ

=

∫ 1

0

(
x1(τ )− y1(τ )

)
u(τ ) dτ +

∫ 1

0

y1(τ ) dτ ≥ 0.

Let us choose

u(τ ) =

{
1 if x1(τ ) ≤ y1(τ ),

0 if x1(τ ) > y1(τ ).

Then ∫

τ :x1(τ)≤y1(τ)

x1(τ )− y1(τ ) dτ +

∫ 1

0

y1(τ ) dτ ≥ 0,

which is equivalent to (12.2.1). �

PROBLEM.

1. Prove that the dual transformation A∗ : R
m+1 −→ L1[0, 1] ⊕ L1[0, 1] is

defined by

A
(
λ1, . . . , λm, ρ

)
=
(
ρ+

m∑
i=1

λifi, ρ
)
.

From Lemma 12.2 and Problem 1 of Section 12.2, we conclude that the dual

problem is

Find β =

(
sup ρ+

m∑
i=1

βiλi

)

Subject to g(τ )− ρ−
m∑
i=1

λifi(τ ) ≥ h(τ ) for almost all τ

− ρ ≥ h(τ ) for almost all τ and
∫ 1

0

h(τ ) dτ ≥ 0,
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where h ∈ L1[0, 1] is a function and λ1, . . . , λm and ρ are dual variables.

Next, we observe that if (λ1, . . . , λm, ρ) is a feasible plan in the above problem

and

∫ 1

0

h(τ ) dτ = ε > 0, we can get a new feasible plan with a better value of the

objective function by modifying h := h− ε and ρ := ρ+ ε. Hence the last condition

can be replaced by

∫ 1

0

h(τ ) dτ = 0. Denoting p(τ ) = −ρ − h(τ ), we come to the

following

(12.3) Dual problem.

Find β = sup

( m∑
i=1

λiβi −
∫ 1

0

p(τ ) dτ

)

Subject to − p(τ ) +
m∑
i=1

λifi(τ ) ≤ g(τ ) for almost all τ and

p(τ ) ≥ 0 for almost all τ

in dual variables λ1, . . . , λm ∈ R and p ∈ L1[0, 1].

PROBLEM.

1. Let us consider a discrete version of Problem 12.1:

Find γ = inf

N∑
k=1

g(τk)u(τk)

Subject to

N∑
k=1

fi(τk)u(τk) = βi for i = 1, . . . ,m

−u(τk) ≥ −1 for k = 1, . . . N and

u(τk) ≥ 0 for k = 1, . . . N

in the primal variables u(τ1), . . . , u(τN ) ∈ R. Here g(τk) and fi(τk) are real numbers

for k = 1, . . . , N and i = 1, . . . ,m.

Using Problem 3 of Section 8.2, show that the dual problem is

Find β =sup

( m∑
k=1

λiβi −
N∑

k=1

p(τk)

)

Subject to −p(τk) +
m∑
i=1

λifi(τk) ≤ g(τk) and

p(τk) ≥ 0 for k = 1, . . . , N

in the dual variables λ1, . . . , λm and p(τ1), . . . , p(τN).

Next, we compare optimal values in Problems 12.1 and 12.3.
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(12.4) Proposition. Suppose that there is a primal feasible plan u(τ ) in Problem
12.1. Then γ = β (there is no duality gap) and there is a primal optimal plan.

Proof. We use Theorem 7.2 and Lemma 7.3. Let us introduce the weak topology

of the duality in the spaces E1 = L∞[0, 1] ⊕ L∞[0, 1] and F1 = L1[0, 1] ⊕ L1[0, 1].
From Proposition III.5.2 it follows that the cone K ⊂ E1 defined by (12.1.1) has a

compact base consisting of the pairs (u, v), where u(τ ), v(τ ) ≥ 0 and u(τ )+v(τ ) = 1

for almost all τ . Since for (u, v) ∈ K we have

∫ 1

0

u(τ ) + v(τ ) dτ = 0 implies u(τ ) = v(τ ) = 0 for almost all τ,

we conclude that ker(Â) ∩K = {0}. Therefore, by Lemma 7.3, the image Â(K) is

closed in R
m+2 and hence by Theorem 7.2 there is no duality gap.

Since

γ ≥ −
∫ 1

0

|g(τ )| dτ > −∞,

we conclude that there is a primal optimal plan. �

An interesting feature of Problem 12.3 is that it is, essentially, finite dimen-
sional. In fact, the only “true” variables are the real variables λ1, . . . , λm. Once

their values are fixed, the best possible p(τ ) is easy to find.

(12.5) Proposition (“the maximum principle”). Let us fix some real numbers
λ1, . . . , λm and define p by

p(τ ) = max
{
0,−g(τ ) +

m∑
i=1

λifi(τ )
}
.

Then (λ1, . . . , λm; p) is a dual feasible plan with the largest possible value of the
objective function with the given λ1, . . . , λm. In other words, for any p1 ∈ L1[0, 1]
such that (λ1, . . . , λm; p1) is a dual feasible plan, we have

m∑
i=1

λiβi −
∫ 1

0

p(τ ) dτ ≥
m∑
i=1

λiβi −
∫ 1

0

p1(τ ) dτ

and the inequality is strict unless p1(τ ) = p(τ ) for almost all τ .

Proof. Every feasible function p in Problem 12.3 must satisfy the inequalities

p(τ ) ≥ −g(τ ) +

m∑
i=1

λifi(τ ) and p(τ ) ≥ 0.

Hence to choose a feasible p with the smallest value of

∫ 1

0

p(τ ) dτ , we must choose

p(τ ) = max
{
0,−g(τ ) +

m∑
i=1

λifi(τ )
}
,
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as claimed. �

Often, Proposition 12.5 allows us to find the dual optimal plan if there is any.

Then the complementary slackness conditions allow us to find the primal optimal

plan.

(12.6) Proposition. Let u(τ ) be a primal optimal plan and let (λ1, . . . , λm; p) be
a dual optimal plan. Suppose further that the set of roots of the function

g(τ )−
m∑
i=1

λifi(τ )

has measure zero. Then

u(τ ) =

{
1 if p(τ ) > 0,

0 if p(τ ) = 0

for almost all τ ∈ [0, 1].

Proof. We use the “complementary slackness” conditions of Part 3, Theorem 6.2.

We observe that in this particular situation, the conditions can be written as

∫ 1

0

p(τ )
(
1− u(τ )

)
dτ +

∫ 1

0

(
g(τ ) + p(τ )−

m∑
i=1

λifi(τ )
)
u(τ ) dτ = 0.

Both integrals are non-negative, hence we conclude that for almost all τ such that

p(τ ) > 0 we must have u(τ ) = 1 (otherwise, the first integral is positive). From

Proposition 12.5 we have

p(τ ) = 0 implies g(τ )−
m∑
i=1

λifi(τ ) ≥ 0

for almost all τ . Thus if p(τ ) = 0, we must have u(τ ) = 0 for almost all τ (otherwise,

the second integral is positive). �

PROBLEM.

1. Consider the primal problem

Find γ = inf

∫ 1

0

τu(τ ) dτ

Subject to

∫ 1

0

u(τ ) dτ = 1/2 and

0 ≤ u(τ ) ≤ 1

and the dual problem

Find β =sup

(
λ/2−

∫ 1

0

p(τ ) dτ

)

Subject to − p(τ ) + λ ≤ τ and

p(τ ) ≥ 0.

Find the dual optimal plan and the primal optimal plan.
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13. Uniform Approximation as a Linear Programming

Problem

Let us recall from Section I.6 the problem of the uniform (Chebyshev) approxima-

tion: suppose we are given continuous functions f1, . . . , fm on the interval [0, 1] and
yet another continuous function g on [0, 1] (instead of the interval [0, 1] we can con-

sider an arbitrary compact metric space X). We want to find a linear combination

ξ1f1 + . . .+ ξmfm, such that the maximum deviation

ξ0 = max
0≤τ≤1

∣∣ξ1f1(τ ) + . . .+ ξmfm(τ )− g(τ )
∣∣

is the smallest possible.

Hence we can write the problem in the following form.

(13.1) Primal problem.

Find γ = inf ξ0

Subject to ξ0 +

m∑
i=1

ξifi(τ ) ≥ g(τ ) for all τ ∈ [0, 1] and

ξ0 −
m∑
i=1

ξifi(τ ) ≥ −g(τ ) for all τ ∈ [0, 1]

in the real variables ξ0, ξ1, . . . , ξm.

To interpret Problem 13.1 as a general linear programming problem 6.1.1, we

choose

• E1 = F1 = R
m+1 with the standard duality 〈〉1 of Example 3.2.1;

• E2 = C[0, 1]⊕ C[0, 1] and F2 = V [0, 1]⊕ V [0, 1] with the duality

〈
(h1, h2), (μ1, μ2)

〉
2
=

∫ 1

0

h1 dμ1 +

∫ 1

0

h2 dμ2

(cf. Example 3.2.4 and Problem 4 of Section 3.2);

• the linear transformation A : E1 −→ F1 defined by

A(ξ0, ξ1, . . . , ξm) =
(
ξ0 +

m∑
i=1

ξifi, ξ0 −
m∑
i=1

ξifi

)
;

• cones K1 = {0} ⊂ E1 and

K2 =
{
(h1, h2) : h1(τ ), h2(τ ) ≥ 0 for all 0 ≤ τ ≤ 1

}
⊂ E2
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(cf. Example 5.2.4);

• vectors b = (g,−g) ∈ E2 and c = (1, 0, . . . , 0) ∈ E1.

Then the primal problem can be written in the usual form

Find γ = 〈x, c〉1
Subject to Ax ≥K2

b and

x ≥K1
0.

To write the dual problem, we need to find A∗, K∗
1 and K∗

2 .

PROBLEMS.

1◦. Prove that A∗ : V [0, 1]⊕ V [0, 1] −→ R
m+1 is defined by

A∗(μ1, μ2) =(∫ 1

0

dμ1 +

∫ 1

0

dμ2,

∫ 1

0

f1 dμ1 −
∫ 1

0

f1 dμ2, . . . ,

∫ 1

0

fm dμ1 −
∫ 1

0

fm dμ2

)
.

2◦. Prove that K∗
1 = F1 = R

m and that

K∗
2 =
{
(μ1, μ2) : μ1, μ2 ∈ V+

}
;

cf. Example 5.2.4 and Problem 2 of Section 5.3.

Let us write μ ≥ 0 instead of μ ∈ V+.

Summarizing, we conclude that the dual problem

Find β = sup〈b, l〉2
Subject to A∗l ≤K∗

1
c and

l ≥K∗
2
0

is stated as follows:

(13.2) Dual problem.

Find β = sup

(∫ 1

0

g dμ1 −
∫ 1

0

g dμ2

)

Subject to

∫ 1

0

dμ1 +

∫ 1

0

dμ2 = 1,

∫ 1

0

fi dμ1 −
∫ 1

0

fi dμ2 = 0 for i = 1, . . . ,m and

μ1, μ2 ≥ 0,

where the dual variables μ1 and μ2 are Borel measures on [0, 1].
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PROBLEMS.

1. Let us consider a discrete version of Problem 13.1:

Find γ = inf ξ0

Subject to ξ0 +

m∑
i=1

ξifi(τj) ≥ g(τj) for j = 1, . . . , N and

ξ0 −
m∑
i=1

ξifi(τj) ≥ −g(τj) for j = 1, . . . , N,

where τ1, . . . , τN ∈ [0, 1] are some numbers.

Prove that the dual problem is

Find β = sup

N∑
j=1

(λ+
j − λ−

j )g(τj)

Subject to

N∑
j=1

(λ+
j + λ−

j ) = 1,

N∑
j=1

(λ+
j − λ−

j )fi(τj) = 0 for i = 1, . . . ,m and

λ+
j , λ

−
j ≥ 0 for j = 1, . . . , N

in real variables λ+
j and λ−

j for j = 1, . . . , N . Moreover, prove that the latter

problem is equivalent to the following optimization problem:

Find β = sup

N∑
j=1

σjg(τj)

Subject to

N∑
j=1

σjfi(τj) = 0 for i = 1, . . . ,m and

N∑
j=1

|σj | ≤ 1

in real variables σ1, . . . , σN .

2. For a μ ∈ V [0, 1], let us define

‖μ‖ = sup

{∣∣∣
∫ 1

0

f dμ
∣∣∣ : max

0≤τ≤1
|f(τ )| ≤ 1

}
;

cf. Problem 2 of Section III.8.1. Prove that every (signed) measure μ such that

‖μ‖ ≤ 1 can be written as μ = μ1 − μ2 for some μ1, μ2 ≥ 0 such that
∫ 1

0

dμ1 +

∫ 1

0

dμ2 = 1.

Conversely, prove that if μ = μ1 − μ2 where μ1, μ2 ≥ 0 and satisfy the above

equation, we have ‖μ‖ ≤ 1.

Problem 2 of Section 13.2 suggests the following
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(13.3) Reformulation of the dual problem.

Find β = sup

∫ 1

0

g dμ

Subject to ‖μ‖ ≤ 1 and
∫ 1

0

fi dμ = 0 for i = 1, . . . ,m

with variable μ which is a signed Borel measure on [0, 1].

Problem 13.1 has a simple geometric interpretation. In the space C[0, 1], let
L = span

(
f1, . . . , fm

)
be the subspace spanned by the functions f1, . . . , fm. Given

a function g ∈ C[0, 1], we are looking for a function f ∈ L closest to g in the uniform

metric dist(f, g) = max0≤τ≤1 |f(τ )− g(τ )|.

L

g

0

f

Figure 55

In Problem 13.3 we look for a linear functional μ of the unit norm such that

μ(h) = 0 for all h ∈ L and such that μ(g) is maximized. If L were a subspace of

Euclidean space and the distance dist(f, g) were the standard Euclidean distance,

the largest possible value of μ(g) should have clearly been equal to the distance

from g to L.

It turns out that indeed there is no duality gap in Problems 13.1 and 13.2 even

though the metric is different from the Euclidean one.

(13.4) Proposition. We have γ = β (there is no duality gap). Moreover, there is
a primal optimal plan and a dual optimal plan.

Sketch of Proof. Problem 13.2 can be considered as a primal problem in the

canonical form (see Problem 7.1.1) provided we replace sup by − inf of the opposite

linear functional. One can check that the dual to that primal problem is equivalent

to Problem 13.1, cf. Problem 1 of Section 6.1. Hence we are going to apply

Theorem 7.2 to Problem 13.2 as to a primal problem. Let us introduce the weak
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topology of the duality in the spaces E1, F1, E2 and F2. We observe that there

is a feasible plan in Problem 13.2: for example we may choose μ1 = μ2 = dτ/2.
Let K = K∗

2 =
{
(μ1, μ2) : μ1, μ2 ∈ V+

}
. Thus we have to show that the image of

T (K) ⊂ R
m+1 is a closed set, where T is defined by

T (μ1, μ2) =

(∫ 1

0

dμ1 +

∫ 1

0

dμ2,

∫ 1

0

f1 dμ1 −
∫ 1

0

f1 dμ2, . . . ,

∫ 1

0

fm dμ1 −
∫ 1

0

fm dμ2,

∫ 1

0

g dμ2 −
∫ 1

0

g dμ1

)
.

One can observe that (kerT ) ∩K = {0} since for μ1, μ2 ≥ 0 we have

∫ 1

0

dμ1 +

∫ 1

0

dμ2 = 0 implies μ1 = μ2 = 0.

Moreover, cone K has a compact base

B =

{
(μ1, μ2) : μ1, μ2 ≥ 0 and

∫ 1

0

dμ1 +

∫ 1

0

dμ2 = 1

}
;

cf. Section III.8. Hence by Lemma 7.3, T (K) is a closed convex cone and by

Theorem 7.2 we conclude that there is no duality gap and that Problem 13.2 has

an optimal plan.

To prove that Problem 13.1 has an optimal plan, we use a “brute force” type

argument similar to that in the proof of Proposition I.6.3. Without loss of generality,

we may assume that f1, . . . , fm are linearly independent. For x = (ξ1, . . . , ξm), let

p(x) = max
0≤τ≤1

|ξ1f1(τ ) + . . .+ ξmfm(τ )|.

Then p(x) is a continuous function and p(x) > 0 for all x �= 0. Let Sm−1 ⊂ R
m be

the unit sphere in the space of all x = (ξ1, . . . , ξm). Hence there is a δ > 0 such

that p(x) > δ for all x ∈ S
m−1. Therefore p(x) > δR for all x such that ‖x‖ ≥ R.

Let M = max0≤τ≤1 g(τ ). If p(x) > 2M , then

max
0≤τ≤1

|ξ1f1(τ ) + . . .+ ξmfm(τ )− g(τ )| > M

and f ≡ 0 is a better approximation to g than ξ1f1+ . . .+ξmfm. Thus we conclude

that the optimal x is found as a point in the compact set
{
x : ‖x‖ ≤ 2Mδ−1

}
where the minimum value of the continuous function

d(x) = max
0≤τ≤1

|ξ1f1(τ ) + . . .+ ξmfm(τ )− g(τ )|

is attained. For such an x = (ξ1, . . . , ξm), the vector (ξ0, ξ1, . . . , ξm) with ξ0 = d(x)
is an optimal plan in Problem 13.1. �
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PROBLEMS.

The next two problems provide a useful interpretation of the complementary

slackness conditions.

1. Prove that in Problem 13.3 there exists an optimal solution μ which is a

linear combination of at most m+ 1 delta-measures:

μ =

k∑
i=1

σiδτi where k ≤ m+ 1, τi ∈ [0, 1] and

k∑
i=1

|σi| = 1.

Hint: Prove that the extreme points of the set {μ : ‖μ‖ ≤ 1} are the (signed)

delta-measures δτ and −δτ for some τ ∈ [0, 1]; cf. Problem 2 of Section III.8.4.

2. Let x = (ξ0, ξ1, . . . , ξm) be a feasible plan in Problem 13.1 and let

f = ξ1f1 + . . . + ξmfm. Prove that x is an optimal plan if and only if there

exist k ≤ m+ 1 points τi ∈ [0, 1] and k numbers σi such that

k∑
i=1

|σi| = 1,
k∑

i=1

σifj(τi) = 0 for j = 1, . . . ,m

and such that if σi > 0, then g(τi)− f(τi) = ξ0 and if σi < 0, then g(τi)− f(τi) =
−ξ0.

Hint: Use Problem 2 and Theorem 6.2

3. In Problems 13.1 and 13.2, let m = 1, f1(τ ) = 1 and let g(τ ) = τ . Find a

primal optimal plan and a dual optimal plan.

14. The Mass-Transfer Problem

In this section, we discuss an “infinite” version of the Transportation Problem (see

Section 9), known as the Mass-Transfer Problem. Historically, it is one of the oldest

linear programming problems (although it was recognized as such much later than

it was first considered). Apparently, it was considered for the first time by G.

Monge in 1781 although it was not until 1942 that L.V. Kantorovich interpreted it

as a linear programming problem. We discuss this interesting problem only briefly,

leaving much to prove to the problems.

Informally, the problem is described as follows. Suppose we are given an initial

mass distribution on the interval [0, 1] (or on an arbitrary compact metric space X)

and a target mass distribution. For “moving” a unit mass from position τ1 ∈ [0, 1]
to position τ2 ∈ [0, 1] we pay the price of c(τ1, τ2), where c : [0, 1] × [0, 1] −→ R

is a certain (continuous) function. We are looking for the least expensive way to
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redistribute the mass.

a ) 

0  1 0 1

b )

Figure 56. Example: a) the initial mass distribution on the interval

[0, 1] and a way to obtain the target mass distribution b)

Let us think of the initial and target mass distributions as non-negative Borel

measures μ1, μ2 ∈ V [0, 1]. Let I1 and I2 be two copies of the interval [0, 1]. We

think of μ1 as an element of V (I1) (the space of signed Borel measures on I1) and
of μ2 as an element of V (I2) (the space of signed Borel measures on I2).

Let us describe what “redistributing” means. Let S = I1×I2 be the unit square
and let C(S) be the vector space of all real-valued continuous functions f : S −→ R.

We make C(S) a topological vector space in just the same way as we introduced

topology in C[0, 1]; cf. Section III.8. Namely, we declare a set U ⊂ C(S) open if

for every f ∈ U there is an ε > 0 such that the set

U(f, ε) =
{
g ∈ C(S) : |f(τ )− g(τ )| < ε for all τ ∈ S

}

is contained in U . Similarly, we introduce the space V (S) of all signed Borel

measures on S as the space of all continuous linear functionals φ : C(S) −→ R. We

say that f ∈ C(S) is non-negative if f(τ ) ≥ 0 for all τ ∈ S. Similarly, we say that

an element μ ∈ V (S) is positive (denoted μ ≥ 0) provided

∫

S

f dμ ≥ 0 for any non-negative f ∈ C(S).

For example, the delta-measure δτ defined for any τ ∈ S by

δτ (f) = f(τ ) for all f ∈ C(S)

is a positive linear functional. Thus we interpret a redistribution of mass as a non-

negative measure μ ∈ V (S). That redistribution should satisfy initial and target

conditions.

Let us define linear transformations P1, P2 : V (S) −→ V (I1), V (I2), called

projections, as follows. Given a function f ∈ C(I1), we define its extension F ∈
C(S) by F (ξ1, ξ2) = f(ξ1). Similarly, given a function f ∈ C(I2), we define its
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extension F ∈ C(S) by F (ξ1, ξ2) = f(ξ2). Given a μ ∈ V (S), we define P1(μ) ∈
V (I1) as the linear functional C(I1) −→ R such that for every f ∈ C(I1)

P1(μ)(f) =

∫

S

F dμ where F is the extension of f.

Similarly, given a μ ∈ V (S), we define P2(μ) ∈ V (I2) as the linear functional

C(I2) −→ R such that for every f ∈ C(I2)

P2(μ)(f) =

∫

S

F dμ where F is the extension of f.

Now we write the initial condition as P1(μ) = μ1 and the target condition as

P2(μ) = μ2.

Finally, we think of a cost function c(τ1, τ2) as a continuous function c ∈ C(S)
on the square. Hence we arrive at the following optimization problem.

(14.1) Primal problem.

Find γ = inf

∫

S

c dμ

Subject to P1(μ) = μ1,

P2(μ) = μ2 and

μ ≥ 0

in the primal variable μ which is a Borel measure on the unit square S = [0, 1]×[0, 1].
Here μ1 and μ2 are fixed Borel measures on the interval [0, 1] and c is a continuous

function on the square S.

To interpret Problem 14.1 as a linear programming problem, we define

• E1 = V (S), F1 = C(S) with the duality

〈μ, f〉1 =

∫

S

f dμ,

• E2 = V (I1)⊕ V (I2), F2 = C(I1)⊕ C(I2) with the duality

〈
(μ1, μ2), (f1, f2)

〉
2
=

∫ 1

0

f1 dμ1 +

∫ 1

0

f2 dμ2,

• the linear transformation A : E1 −→ E2:

A(μ) =
(
P1(μ), P2(μ)

)
,
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• the cone K ⊂ E1:

K =
{
μ ∈ V (S) : μ ≥ 0

}
,

• the vectors b = (μ1, μ2) ∈ E2 and c ∈ F1.

Then Problem 14.1 is stated as the primal linear programming problem in the

canonical form:

Find 〈x, c〉1
Subject to Ax = b and

x ≥K 0.

To state the dual problems, we need to find the dual transformation A∗ and the

dual cone K∗. They are found in Problems 3 and 4 below.

PROBLEMS.

1. Let us consider a discrete version of the problem. Let us fix some n distinct

points τ1, . . . , τn ∈ [0, 1]. Suppose that μ1 and μ2 are non-negative combinations

of delta-measures:

μ1 =

n∑
i=1

αiδτi and μ2 =

n∑
i=1

βiδτi

for some αi, βi ≥ 0. Let us look for the measure μ ∈ V (S) which is a linear

combination of the delta-measures in the points (τi, τj), 1 ≤ i, j ≤ n:

μ =

n∑
i,j=1

ξijδ(τi,τj).

Show that Problem 14.1 is equivalent to the following linear programming problem:

Find γ = inf

n∑
i,j=1

γijξij

Subject to

n∑
j=1

ξij = αi for all i = 1, . . . , n,

n∑
i=1

ξij = βj for all j = 1, . . . , n and

ξij ≥ 0 for all i, j.

Interpret the latter problem as a transportation problem of Section 9.

2. Check that the linear transformations P1, P2 : C(S) −→ C(I1), C(I2) are

well defined.
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3. Prove that A∗ : C(I1)⊕ C(I2) −→ C(S),

A∗
(
(f1, f2)

)
= F where F (ξ1, ξ2) = f1(ξ1) + f2(ξ2),

is the linear transformation dual to A.

4. Prove that

K∗ =
{
f ∈ C(S) : f(τ ) ≥ 0 for all τ ∈ S

}
.

Using Problems 3 and 4 of Section 14.1, we conclude that the dual problem

Find β = sup〈b, l〉2
Subject to A∗l ≤K∗ c

is written as follows:

(14.2) Dual problem.

Find β = sup
(∫ 1

0

l1 dμ1 +

∫ 1

0

l2 dμ2

)

Subject to l1(τ1) + l2(τ2) ≤ c(τ1, τ2) for all τ1, τ2 ∈ [0, 1]

in the dual variables l1 and l2 which are continuous functions on the interval [0, 1].

PROBLEMS.

1. Suppose that μ1 and μ2 are non-negative combinations of delta-measures as

in Problem 1 of Section 14.1. Check that Problem 14.2 is written as

Find β = sup

n∑
i=1

(
λ′
iαi + λ′′

i βi

)

Subject to λ′
i + λ′′

j ≤ γij for all i, j = 1, . . . , n

in the dual variables λ′
i, λ

′′
i for i = 1, . . . , n. Show that the latter problem is

equivalent to Problem 9.2 for the relevant transportation network.

2. In Problems 14.1 and 14.2, let us choose μ1 = τ dτ , μ2 = (1 − τ ) dτ and

c(τ1, τ2) = |τ1 − τ2|; see Figure 57. Find a primal optimal plan and a dual optimal

plan.

Hint: Guess a primal optimal plan and a dual optimal plan and show that the

corresponding values of objective functions are equal.
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0 1 0 1� �� �

Figure 57. What is the best way to go from the distribution μ1 to

the distribution μ2 on the interval [0, 1]?

3◦. Show that a dual feasible plan always exists.

4. Show that a primal feasible plan exists if and only if μ1, μ2 ≥ 0 and

∫ 1

0

dμ1 =

∫ 1

0

dμ2.

Hint: Prove that there exists a measure μ ∈ V (S) (denoted μ1 × μ2) such that for

any f1 ∈ C(I1), f2 ∈ C(I2) and F (ξ1, ξ2) = f1(ξ1)f2(ξ2) one has

∫

S

F dμ =
(∫ 1

0

f1 dμ1

)(∫ 1

0

f2 dμ2

)
.

5. Prove that if P1(μ) = 0 for μ ≥ 0, then μ = 0.

6. Deduce from the Alaoglu Theorem (Theorem III.2.9) that the set

B =
{
μ ∈ V (S) : μ(S) ≥ 0 and

∫

S

dμ = 1
}

is compact in the weak∗ topology of V (S).

(14.3) Proposition. Suppose that there exists a primal feasible plan. Then γ = β
(no duality gap) and there exists a primal optimal plan.
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Sketch of Proof. We use Theorem 7.2 and Lemma 7.3. Let us introduce the weak

topology of the duality (see Section 4) in all relevant spaces E1, F1, E2 and F2. Let

us consider the image Â(K) of the cone K =
{
μ ∈ V (S) : μ ≥ 0

}
under the linear

transformation Â : V (S) −→ V (I1)⊕ V (I2)⊕ R,

μ �−→
(
P1(μ), P2(μ),

∫

S

c dμ

)
.

Problem 5 of Section 14.2 implies that (ker Â)∩K = {0}. Moreover, cone K has a

compact base

B =
{
μ ∈ V (S) : μ(S) ≥ 0 and

∫

S

dμ = 1
}
;

cf. Problem 6 of Section 14.2. One can show that Â is a continuous linear transfor-

mation. Therefore, by Lemma 7.3, the image Â(K) is closed. Hence by Theorem

7.2 there is no duality gap. Since by Problem 3 of Section 14.2, there is a dual

feasible plan, we have γ = β > −∞ and, by Theorem 7.2, there is a primal optimal

plan. �

PROBLEMS.

1. Check that Â is indeed continuous.

2∗. Prove that there is a dual optimal plan.

15. Remarks

Our reference for polarity in Euclidean space is [W94]. The moment cone is de-

scribed in detail in [KS66] and [KN77]. For the general concept of duality of

(topological) vector spaces, see [Bou87]. Our exposition of linear programming is

based on [AN87] and some original papers [VT68] and [Ve70]. For the polyhedral

linear programming, see, for example, [PS98], [V01] and [Schr86]. A comprehen-

sive survey of semidefinite programming can be found in [VB96]. Our general

reference in control theory is [BH75].
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Chapter V

Convex Bodies and

Ellipsoids

We explore the metric structure of convex bodies in Euclidean space. We introduce

ellipsoids and prove that up to a factor depending on the dimension of the ambient

space, any convex body looks like an ellipsoid. Next, we discuss how well a convex

body can be approximated by a polynomial hypersurface (ellipsoids correspond to

quadratic polynomials). We discuss the Ellipsoid Method for solving systems of

linear inequalities. Using the technique of measure concentration for the Gaussian

measure in Euclidean space, we obtain new results on existence of low rank ap-

proximate solutions to systems of linear equations in positive semidefinite matrices

and apply our results to problems of graph realizability with a distortion. Then

we briefly discuss the measure and metric on the unit sphere. Exercises address

ellipsoidal approximations of particularly interesting convex sets (such as the Trav-

eling Salesman Polytope and the set of non-negative multivariate polynomials),

various volume inequalities and some results related to the measure concentration

technique.

1. Ellipsoids

In this section, we introduce ellipsoids, which are very important convex sets in

Euclidean space R
d.

(1.1) Definition. Let B =
{
x ∈ R

d : ‖x‖ ≤ 1
}
be the unit ball, let a ∈ R

d be a

vector and let T : Rd −→ R
d be an invertible linear transformation. The set

E = T (B) + a

is called an ellipsoid and a is called its center; see Figure 58.
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B

0

a

E

T ( x ) + a

Figure 58

We have dimE = d and we can write

E =
{
x ∈ R

d :
〈
T−1(x− a), T−1(x− a)

〉
≤ 1
}

=
{
x ∈ R

d :
〈
Q(x− a), x− a

〉
≤ 1
}
,

where Q = (TT ∗)−1 is a positive definite matrix. If we choose a basis of R
d

consisting of the unit eigenvectors of Q, we can define E as

E =
{
(ξ1, . . . , ξd) : λ1(ξ1 − α1)

2 + . . .+ λd(ξd − αd)
2 ≤ 1
}
,

where λ1, . . . , λd are the eigenvalues of Q and a = (α1, . . . , αd).

Consequently, for the volume of E, we have

volE = | detT | volB =
volB√
detQ

.

PROBLEMS.

1◦. Prove that any ellipsoid E ⊂ R
d centered at a can be written as

E =
{
x :
〈
Q(x− a), x− a

〉
≤ 1
}

for some positive definite matrix Q.
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2. Let E =
{
x ∈ R

d : 〈Qx, x〉 ≤ 1
}
, where Q is a positive definite matrix, be

an ellipsoid. Prove that the polar E◦ is the ellipsoid defined by

E◦ =
{
x ∈ R

d : 〈Q−1x, x〉 ≤ 1
}
.

Deduce that (volE)(volE◦) = (volB)2.

3. Let B ⊂ R
d be a unit ball and let T : Rd −→ R

k be a linear transformation

onto R
k for some k ≤ d. Prove that T (B) is an ellipsoid in R

k centered at the

origin.

4◦. Let E ⊂ R
d be an ellipsoid and let T : Rd −→ R

d be an invertible linear

transformation. Prove that T (E) is an ellipsoid.

In a certain sense, ellipsoids are more natural objects than, say, balls. If we

choose a different scalar product in Euclidean space, ellipsoids will remain ellipsoids

although balls may cease to be balls. In fact, we could have defined ellipsoids

without using any Euclidean structure at all: let V be a finite-dimensional real

vector space. Then E ⊂ V is an ellipsoid provided E =
{
x ∈ V : q(x− a) ≤ 1

}
for

some positive definite quadratic form q : V −→ R and some a ∈ V .

Last, we will need a couple of technical results.

(1.2) Lemma. Let B ⊂ R
d be a unit ball and let E ⊂ R

d be an ellipsoid. Then
E = S(B) + a for some a ∈ R

d and a linear transformation S whose matrix is
positive definite.

Proof. We observe that U(B) = B for every orthogonal transformation U . Since

every square matrix T can be written as T = SU , where U is orthogonal and S is

positive definite (the polar decomposition), the proof follows by Definition 1.1. �

(1.3) Lemma. Let X and Y be d× d positive definite matrices. Then

det
(X + Y

2

)
≥
√
det(X) det(Y ).

Moreover, the equality holds if and only if X = Y .

Proof. Let U be a d× d orthogonal matrix and let X ′ = U tXU and Y ′ = U tY U .

We observe that the inequality is satisfied (with equality) for X and Y if and only if

it is satisfied (with equality) for X ′ and Y ′. By choosing an appropriate orthogonal

matrix U , we may assume that X is a diagonal matrix.

Hence we assume that X = diag(λ1, . . . , λd), where λi > 0 for i = 1, . . . , d.
Let T = diag(

√
λ1, . . . ,

√
λd), so X = T 2. Letting X ′ = I and Y ′ = T−1Y T−1,

we observe that the inequality holds (with equality) for X and Y if and only if it

holds (with equality) for X ′ and Y ′. Therefore, without loss of generality we may

assume that X is the identity matrix I.

Hence we assume that X = I is the identity matrix. Then, by choosing an

orthogonal matrix U and letting Y ′ = U tY U , we may assume that Y is a diagonal

matrix.
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Finally, if X = I is the identity matrix and Y = diag(λ1, . . . , λd) for some

positive λ1, . . . , λd, the inequality reduces to the inequality between the geometric

and arithmetic means, that is,

1 + λi

2
≥
√

λi for i = 1, . . . , d,

which is satisfied as equality if and only if λi = 1, that is, if and only if X = Y . �

Lemma 1.3 leads to a series of fascinating inequalities, some of which are stated

in the problems below.

PROBLEMS.

1. Let X and Y be d× d positive definite matrices and let α and β be positive

numbers such that α+ β = 1. Prove that

ln det
(
αX + βY ) ≥ α ln detX + β ln detY.

2∗ (The functional Brunn-Minkowski inequality). Let us fix α, β ≥ 0 such that

α + β = 1. Suppose that f, g and h are non-negative measurable functions on R
d

such that

h(αx+ βy) ≥ fα(x)gβ(y) for all x, y ∈ R
d.

Prove that ∫

Rd

h dx ≥
(∫

Rd

f dx

)α(∫

Rd

g dx

)β
.

The inequality is also known as the Prékopa-Leindler inequality.

Hint: Use induction on the dimension d. For d = 1 use the following trick of

the “transportation of measure”: we may assume that f , g and h are positive and

continuous and that ∫ ∞

−∞
f dx =

∫ +∞

−∞
g dx = 1.

Introduce functions u, v : [0, 1] −→ R by

∫ u(t)

−∞
f(x) dx = t and

∫ v(t)

−∞
g(x) dx = t

and let w(t) = αu(t) + βv(t). Use that

∫ ∞

−∞
h(x) dx =

∫ 1

0

h
(
w(t)
)
w′(t) dt and u′(t)f

(
u(t)
)
= v′(t)g

(
v(t)
)
= 1;

see Section 2.2 of [Le01].

3 (The Brunn-Minkowski inequality). Let A,B ⊂ R
d be compact convex sets

and let α, β ≥ 0 be numbers such that α+ β = 1. Deduce from Problem 2 that

ln vol
(
αA+ βB) ≥ α ln volA+ β ln volB.
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4. Let A ⊂ R
d be a compact convex set containing the origin in its interior. Let

us define its support function hA : Rd −→ R by hA(x) = maxy∈A〈x, y〉 (cf. Problem
3 of Section I.8.3). Prove the following formula for the volume of the polar of A:

volA◦ =
1

d!

∫

Rd

exp
{
−hA(x)

}
dx;

cf. Section IV.1 for the “dual volume”.

5 (Firey’s inequality). Let A,B ⊂ R
d be compact convex sets containing the

origin in their interiors and let α and β be positive numbers such that α + β = 1.

Deduce from the formula of Problem 4 that

ln vol(αA+ βB)◦ ≤ α ln volA◦ + β ln volB◦.

6. Let A ⊂ R
d be a compact convex set containing the origin in its interior.

Let us define a function f : intA −→ R by f(x) = ln vol(A − x)◦. Deduce from

Problem 5 that f is a convex function, that is, f(αx+ βy) ≤ αf(x) + βf(y) for all
x, y ∈ intA and all α, β ≥ 0 such that α + β = 1. Prove that f(x) −→ +∞ as x
approaches ∂A.

Remark: The function f is called the volumetric barrier and plays an important

role in interior-point methods, a powerful class of methods for solving problems of

linear programming; see [NN94].

7◦. Check that for d = 1 the inequalities of Problems 1, 3 and 5 are equivalent

to the concavity of lnx for x > 0.

2. The Maximum Volume Ellipsoid of a Convex Body

We define the class of sets we are interested in.

(2.1) Definition. A compact convex set K ⊂ R
d with a non-empty interior is

called a convex body. A convex body K is symmetric about the origin provided for

every point x ∈ R
d we have x ∈ K if and only if −x ∈ K.

The main result of this section is that for each convex body K ⊂ R
d there is a

unique ellipsoid E ⊂ K of the largest volume and that E in some sense “approx-

imates” K. Moreover, the convex bodies that are symmetric about the origin are

essentially better approximated than general convex bodies.

We prove the first main result of this section.

(2.2) Theorem. Let K ⊂ R
d be a convex body. Among all ellipsoids E contained

in K, there exists a unique ellipsoid of the maximum volume.

Proof. Let B be the unit ball in R
d. Let us consider the set X of all pairs (S, a),

where S is a linear transformation of Rd with a positive semidefinite matrix and

a ∈ R
d is a vector such that S(B)+a ⊂ K. By Lemma 1.2, for each ellipsoid E ⊂ K

there is a pair (S, a) ∈ X such that E = S(B)+a. Moreover, volE = (detS) volB.
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Since K is compact, there is a number ρ such that ‖x‖ ≤ ρ for all x ∈ K.

Therefore, ‖a‖ ≤ ρ and ‖Sx‖ ≤ 2ρ for all x ∈ B and all (S, a) ∈ X . In particular,

X is bounded as a subset of Symd ×R; cf. Section II.12. One can see that X is also

closed (see Problem 1 below) and hence compact.

The function (S, a) �−→ detS attains its maximum on X at a certain point

(S0, a0). Since K has a non-empty interior, we must have detS0 > 0, so E0 =

S0(B) + a0 is an ellipsoid having the largest volume among all ellipsoids inscribed

in K.

Let us prove that the inscribed ellipsoid of the largest volume is unique. SinceK
is convex, one can see that the set X is also convex. Suppose that E1 = S1(B)+a1
and E2 = S2(B) + a2 are two ellipsoids of the largest volume among all contained

in K. Thus we have (S1, a1) ∈ X and (S2, a2) ∈ X . Letting S = (S1 + S2)/2 and

a = (a1+a2)/2, we observe that E = S(B)+a ⊂ K and hence (S, a) ∈ X . Moreover,

volE1 = (detS1) volB, volE2 = (detS2) volB and volE = (detS) volB. Applying

Lemma 1.3, we conclude that unless S1 = S2, we must have volE > volE1 = volE2,

which is a contradiction. Hence S1 = S2.

Let us prove that a1 = a2. Applying a linear transformation and translating,

if necessary, we may assume that

E1 =
{
x ∈ R

d : ‖x+ a‖ ≤ 1
}

and E2 =
{
x ∈ R

d : ‖x− a‖ ≤ 1
}
,

where a = (0, . . . , 0, α) for some α ≥ 0. Let

E =
{
x ∈ R

d : ξ21 + . . .+ ξ2d−1 +
ξ2d

(1 + α)2
≤ 1
}
.

We observe that E ⊂ conv(E1 ∪ E2).

0
aa

E EE
1 2

-

Figure 59

Indeed, let us choose an x ∈ E, x = (ξ1, . . . , ξd). If |ξd| ≤ α, then x belongs

to the cylinder ξ21 + . . . + ξ2d−1 ≤ 1, |ξd| ≤ α, which is a part of conv(E1 ∪ E2). If

ξd > α, then ξd ≤ 1 + α and (ξd − α)2 ≤ ξ2d/(1 + α)2 (substituting τ = ξd − α,
we reduce the last inequality to (1 + α)2 ≤ (1 + α/τ )2 for 0 ≤ τ ≤ 1). Therefore,

x ∈ E2. Similarly, if ξd < −α, then x ∈ E1.
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2. The Maximum Volume Ellipsoid of a Convex Body 209

Finally, we note that volE = (volB)(1 + α) whereas volE1 = volE2 = volB.

Hence we must have α = 0 and the ellipsoid E ⊂ K of the largest volume is unique.

�

(2.3) Definition. Given a convex body K ⊂ R
d, the unique ellipsoid E ⊂ K of

the maximum volume is called the maximum volume ellipsoid of K.

The maximum volume ellipsoid is also known as the Löwner-John ellipsoid or

just the John ellipsoid.

PROBLEMS.

1◦. Check that the set X in the proof of Theorem 2.2 is indeed closed.

2. Let K ⊂ R
d be a convex body and let E be its maximum volume ellipsoid.

For a vector x = (ξ1, . . . , ξd), let x⊗x denote the d×d matrix whose (i, j)-th entry

is ξiξj . Prove that E is the unit ball B =
{
x : ‖x‖ ≤ 1

}
if and only if there exist

unit vectors u1, . . . , um ∈ ∂K and positive numbers λ1, . . . , λm summing up to 1

such that
m∑
i=1

λiui = 0 and

m∑
i=1

λi(ui ⊗ ui) =
1

d
I,

where I is the identity matrix. The last condition can be rewritten as

m∑
i=1

λi〈ui, x〉2 =
1

d
‖x‖2 for all x ∈ R

d.

Prove that one can choose m ≤ (d2 + 3d)/2.

Hint: Let X = ∂K ∩B, let n = d(d+ 3)/2 and let us consider the map

φ : X −→ R
n, where φ(x) =

(
x⊗ x, x

)
.

If
(
1
dI, 0
)
/∈ conv(X), then

(
1
dI, 0
)
can be separated from conv(X) by a hyperplane.

Use the hyperplane to inscribe an ellipsoid of a bigger volume; see [B97].

3. Let EK denote the maximum volume ellipsoid of a convex body K. Prove

that for any two convex bodies A and B in R
d and any two positive numbers α and

β such that α+ β = 1, one has

ln volEαA+βB ≥ α ln volEA + β ln volEB.

4. Let K ⊂ R
d be a convex body. Prove that there exists a unique ellipsoid

E ⊃ K of the minimum volume. The ellipsoid E is called the minimum volume

ellipsoid (also known as the Löwner-John ellipsoid, the Löwner-Behrend-John el-

lipsoid or just the Löwner ellipsoid of K).

Although we used the Euclidean structure a lot in the proof of Theorem 2.2,

the maximum volume ellipsoid E of a convex body K ⊂ R
d does not depend on

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



210 V. Convex Bodies and Ellipsoids

the Euclidean structure of Rd at all and is well defined for any convex body in

a finite-dimensional vector space V . Indeed, if we change a scalar product in V ,

the volumes of all measurable sets will be scaled by a positive constant and the

maximum volume ellipsoid will remain such.

It is worth noting that the definition of a convex body as well can be made

independent of the Euclidean structure. Given a finite-dimensional real vector space

V , we call a set K ⊂ V a convex body if K is a convex set not contained in any

affine hyperplane and such that the intersection of K with every straight line is a

closed bounded interval.

Our goal is to prove that the maximum volume ellipsoid of K approximates

K up to a certain factor depending on the dimension alone. Again, the statement

of the result is independent of any Euclidean structure although the proof heavily

relies on such a structure.

(2.4) Theorem. Let K ⊂ R
d be a convex body and let E ⊂ K be its maximum

volume ellipsoid. Suppose that E is centered at the origin. Then K ⊂ dE.

Proof. Applying a linear transformation if necessary, we can assume that E is

the unit ball B. Suppose there is a point x ∈ K such that ‖x‖ > d. Let C =

conv
(
B ∪ {x}

)
. Since K is convex, C ⊂ K. Our goal is to inscribe an ellipsoid E1

in C such that volE1 > volB to obtain a contradiction.

Without loss of generality, we assume that x = (ρ, 0, . . . , 0) for some ρ > d.
We look for E1 in the form:

(2.4.1) E1 =
{
x :

(ξ1 − τ )2

α2
+

1

β2

d∑
i=2

ξ2i ≤ 1
}
,

where τ > 0 is sufficiently small. Because of the symmetry, if we find τ , α and β
such that E1 fits inside C for d = 2, then E1 fits inside C for any d ≥ 2. Hence we

assume for a moment that d = 2.

The convex hull C is bounded by the two straight line intervals and an arc of

∂B. We inscribe E1 in C in such a way that E1 touches B at (−1, 0) and touches

the two straight line intervals bounding C as shown on Figure 60. Since E1 touches

B at (−1, 0), we have α = τ + 1. The equation of the tangent line to ∂E1 at the

point z = (ζ1, ζ2) is
ζ1 − τ

α2
(ξ1 − τ ) +

ζ2
β2

ξ2 = 1.

Since this line passes through (ρ, 0), we get

(ζ1 − τ )2

α2
=

α2

(ρ− τ )2
.

The slope of that line is −1/
√

ρ2 − 1, hence we deduce the equation

β2

ζ2
=

1√
ρ2 − 1

α2

ζ1 − τ
=

ρ− τ√
ρ2 − 1

.
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2. The Maximum Volume Ellipsoid of a Convex Body 211

Therefore,

ζ22
β2

=
β2(ρ2 − 1)

(ρ− τ )2
.

Since
(ζ1 − τ )2

α2
+

ζ22
β2

= 1,

we get

α2

(ρ− τ )2
+

β2(ρ2 − 1)

(ρ− τ )2
= 1

and

β2 =
(ρ− τ )2 − α2

ρ2 − 1
=

(ρ− τ )2 − (τ + 1)2

ρ2 − 1
.

B

E

0

�( , ( � , 0 )

�

�

1

2

1

z

1 0 )-

Figure 60. If ρ is large enough, volE1 > volB.

Summarizing, we conclude that for any d ≥ 2 and for 0 ≤ τ < (ρ − 1)/2, the
ellipsoid E1 defined by (2.4.1) with

α = τ + 1 and β2 =
(ρ− τ )2 − (τ + 1)2

ρ2 − 1

is contained in C. Now we have

ln
volE1

volB
= (d− 1) lnβ + lnα =

d− 1

2
lnβ2 + lnα.
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Assuming that τ > 0 is small, we obtain

lnα = τ +O(τ2) and lnβ2 = − 2τ

ρ− 1
+O(τ2).

Therefore, if ρ > d, then for a sufficiently small τ > 0, we get volE1 > volB, which

is a contradiction. �

If a convex body K possesses a symmetry, the uniqueness property of the

maximum volume ellipsoid E of K implies that E must also possess the symmetry.

Sometimes, when the symmetry group of K is rich enough, this may lead to a

complete description of E.

PROBLEMS.

1. Let Δ be the standard d-dimensional simplex:

Δ =
{
(ξ1, . . . , ξd+1) : ξi ≥ 0 for i = 1, . . . , d+ 1 and ξ1 + . . .+ ξd+1 = 1

}
.

Consider Δ as a d-dimensional convex body in the affine hyperplane

H =
{
(ξ1, . . . , ξd+1) : ξ1 + . . .+ ξd+1 = 1

}
;

cf. Problem 1 of I.2.2. Prove that the maximum volume ellipsoid of Δ is the ball

of radius
1√

d(d+ 1)
centered at

( 1

d+ 1
, . . . ,

1

d+ 1

)
. Show that the constant d in

Theorem 2.4 cannot be improved.

2. Let

C =
{
(ξ1, . . . , ξd) : |ξi| ≤ 1 for i = 1, . . . , d

}

be the cube in R
d; cf. Problem 2 of I.2.2. Prove that the maximum volume ellipsoid

of C is the unit ball.

3. Let

O =
{
(ξ1, . . . , ξd) : |ξ1|+ . . .+ |ξd| ≤ 1

}

be the standard octahedron in R
d, cf. Problem 3 of I.2.2. Prove that the maximum

volume ellipsoid of O is the ball of radius d−1/2 centered at the origin.

4◦. Suppose that a convex body K is symmetric about the origin. Prove that

the maximum volume ellipsoid of K is centered at the origin.

5. Let us fix an n× n matrix A = (aij),

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0 1

1 0 1 0 . . . 0 0

0 1 0 1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
0 . . . . . . 0 1 0 1

1 0 0 . . . 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,
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i.e.,

aij =

{
1 if |i− j| ≡ 1 mod n,

0 otherwise.

Let P the the convex hull of all matrices obtained from A by a simultaneous

permutation of rows and columns: aij �−→ aσ−1(i)σ−1(j) for a permutation σ of

{1, . . . , n}. Then P is called the Symmetric Traveling Salesman Polytope.

a) Prove that dimP = (n2 − 3n)/2.

b) Prove that if an affine subspace L in the affine hull of P is invariant under

the action of the symmetric group Sn: xij �−→ xσ−1(i)σ−1(j), then L is either a

point xij = 2/n or the whole affine hull of P (that is, the representation of Sn is

irreducible).

c) Prove that the maximum volume ellipsoid of P (where P is considered as a

convex body in its affine hull) is a ball centered at xij = 2/n.

d) Prove that the ball of radius
√
8n− 16/(n2 − 3n) centered at xij = 2/n is

contained in P .

Remark: See [BS96] and [YKK84] for information about the combinatorial

structure of the Traveling Salesman and other interesting polytopes.

6. Let K ⊂ R
d be a convex body and suppose that the points a1, . . . , ad+1 ∈ K

are chosen in such a way that the volume of S = conv
(
a1, . . . , ad+1

)
is the maximum

possible. Suppose that a1 + . . .+ ad+1 = 0. Prove that K ⊂ −dS; cf. Problem 1 of

Section I.5.2.

a

S

0

K

a
1

2
a

3

Figure 61

7. In the Euclidean space Symn of symmetric n×n matrices X with the scalar

product 〈A,B〉 = tr(AB), let C be the set of all positive semidefinite matrices of

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



214 V. Convex Bodies and Ellipsoids

trace 1. Let us consider C as a convex body in the affine hyperplane trX = 1

(cf. Section II.12). Prove that the maximum volume ellipsoid of C is the ball of

radius
1√

n(n− 1)
centered at

1

n
I, where I is the identity matrix. Prove that C is

contained in the ball of radius

√
n− 1

n
centered at

1

n
I.

Remark: It turns out that C is a counterexample to the famous Borsuk conjec-
ture (see Section 31.1 of [DL97]) which asserted that every d-dimensional convex

body can be partitioned into d + 1 subsets of a strictly smaller diameter (the di-

ameter of a convex body is the largest distance between some two points of the

body).

8∗ (G. Blekherman). Let H2k,n be the vector space of all real homogeneous

polynomials p of degree 2k in n variables x = (ξ1, . . . , ξn); cf. Section I.3. Check

that dimH2k,n =
(
n+2k−1

2k

)
. Let us make H2k,n Euclidean space by introducing the

scalar product

〈f, g〉 =
∫

Sn−1

f(x)g(x) dx for f, g ∈ H2k,n,

where S
n−1 is the unit sphere in R

n and dx is the rotation invariant probability

measure on S
n−1.

Let

C =
{
f ∈ H2k,n : f(x) ≥ 0 for all x ∈ R

n and
∫

Sn−1

f(x) dx = 1
}
.

Considering C as a convex body in its affine hull, prove that the maximum volume

ellipsoid of C is the ball B of radius

√
1

dimH2k,n − 1
centered at p(x) = ‖x‖2k =

(ξ21 + . . .+ ξ2n)
k.

9∗ (G. Blekherman). Let C be the convex body of Problem 8 above and let

p = ‖x‖2k, p ∈ C. Let

α =
1(

n+k−1
k

)
− 1

.

Prove that

α(p− C) + p ⊂ C

and that the inclusion fails for any larger α. In other words, the coefficient of
symmetry of C with p as the origin is α.

It turns out that the estimate of Theorem 2.4 can be strengthened in one

important special case.

(2.5) Theorem. Suppose that a convex body K ⊂ R
d is symmetric about the

origin. Let E ⊂ K be the maximum volume ellipsoid of K. Then E is centered at
the origin and K ⊂

√
dE.
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Proof. It follows by Problem 4, Section 2.4, that E is centered at the origin.

Applying a linear transformation, if necessary, we can assume that E is the unit

ball B. Suppose that there is a point x ∈ K such that ‖x‖ >
√
d. Since K is

symmetric about the origin, we have −x ∈ K. Let C = conv
(
B ∪ {x} ∪ {−x}

)
.

Our goal is to inscribe an ellipsoid E1 ⊂ C such that volE1 > volB to obtain a

contradiction; cf. Figure 62.

0

B

�

�

1

2

z

E1


�	�������� 
���������

Figure 62. If ρ is large enough, then volE1 > volB.

The proof essentially follows the proof of Theorem 2.4 with some modifications.

Without loss of generality, we assume that x = (ρ, 0, . . . , 0) for some ρ > d. We

look for E1 in the form

(2.5.1) E1 =
{
(ξ1, . . . , ξd) :

ξ21
α2

+
1

β2

d∑
i=2

ξ2i ≤ 1
}
.

Because of the symmetry, if we find α and β such that E1 fits inside C for d = 2,

then E1 fits inside C for any d ≥ 2. Hence we assume for a moment that d = 2.

The convex hull C is bounded by four straight line intervals and two arcs of

∂B. We inscribe E1 centered at the origin and in such a way that E1 touches the

intervals bounding C as shown on Figure 62.

The equation of the tangent line to ∂E1 at the point z = (ζ1, ζ2) is

ζ1
α2

ξ1 +
ζ2
β2

ξ2 = 1.
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Since the tangent line passes through (ρ, 0), we get the equation

ζ21
α2

=
α2

ρ2
.

The slope of the tangent line is −1/
√

ρ2 − 1, from which we deduce

ζ1β
2

ζ2α2
=

1√
ρ2 − 1

and
ζ22
β2

=
(ρ2 − 1)β2

ρ2
.

Since
ζ21
α2

+
ζ22
β2

= 1,

we get

α2 = ρ2 − (ρ2 − 1)β2.

Summarizing, we conclude that for any d ≥ 2 and for any 1 ≥ β > 0, the ellipsoid

E1 defined by (2.5.1) with α2 = ρ2 − (ρ2 − 1)β2 is contained in C. Now we have

ln
volE1

volB
= (d− 1) lnβ + lnα.

Let us choose β = 1− ε for some sufficiently small ε > 0. Then lnβ = −ε+ O(ε2)

and lnα = ε(ρ2 − 1) + O(ε2). Therefore, if ρ >
√
d, then for a sufficiently small

ε > 0, we get volE1 > volB, which is a contradiction. �

PROBLEMS.

1. Prove that the constant
√
d in Theorem 2.5 cannot be improved (cf. Problem

3 of Section 2.4).

2. Let K ⊂ R
d be a convex body symmetric about the origin and let E ⊃ K be

its minimum volume ellipsoid (see Problem 4, Section 2.3). Prove that d−1/2E ⊂ K.

3. Let K ⊂ R
d be a convex body and let E ⊃ K be its minimum volume

ellipsoid. Suppose that E is centered at the origin. Prove that (1/d)E ⊂ K.

3. Norms and Their Approximations

We apply our results to get some information about the structure of norms, an

important class of functions on a vector space. We recall the definition of a norm.

(3.1) Definition. Let V be a vector space. A function p : V −→ R is called a

norm if it satisfies the following properties:

• p(x) ≥ 0 for all x ∈ V and p(x) = 0 if and only if x = 0;

• p(λx) = |λ|p(x) for all x ∈ V and all λ ∈ R;

• p(x+ y) ≤ p(x) + p(y) for all x, y ∈ V .
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PROBLEMS.

1◦. Prove that the following functions are norms in R
d:

p(x) =
(∑d

i=1 ξ
2
i

)1/2
(the �2 norm),

p(x) = maxi=1,... ,d |ξi| (the �∞ norm) and

p(x) =
∑d

i=1 |ξi| (the �1 norm)

for x = (ξ1, . . . , ξd).

2◦. Let C[0, 1] be the vector space of all continuous functions f : [0, 1] −→ R.

Prove that

p(f) = max
t∈[0,1]

|f(t)|

is a norm in C[0, 1].

We establish a relationship between norms and convex bodies.

(3.2) Lemma. Let p : Rd −→ R be a norm. Let

Kp =
{
x ∈ R

d : p(x) ≤ 1
}
.

Then Kp is a convex body symmetric about the origin. Conversely, if K ⊂ R
d is a

convex body symmetric about the origin, then

pK(x) = inf
{
λ > 0 : x ∈ λK

}

is a norm in R
d such that K =

{
x ∈ R

d : p(x) ≤ 1
}
.

Proof. First, we show that Kp is a convex body symmetric about the origin. For

any a, b ∈ Kp and for any α, β ≥ 0 such that α+ β = 1 we have

p(αa+ βb) ≤ p(αa) + p(βb) = αp(a) + βp(b) ≤ α+ β ≤ 1,

so αa+ βb ∈ K and hence K is convex. Since p(−x) = p(x), we conclude that Kp

is symmetric about the origin.

Next, we remark that p is a continuous function. Indeed, let e1, . . . , ed be the

standard basis of Rd, so that x = ξ1e1 + . . .+ ξded for x = (ξ1, . . . , ξd). Let

γ = max
i=1,... ,d

p(ei).

Then

p(x) ≤ γ

d∑
i=1

|ξi|.

Let us choose two points x = (ξ1, . . . , ξd) and y = (η1, . . . , ηd) in R
d. Then

p(x) = p
(
y + (x− y)

)
≤ p(y) + p(x− y) and, similarly,

p(y) = p
(
x+ (y − x)

)
≤ p(x) + p(y − x).
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Therefore,

|p(x)− p(y)| ≤ p(x− y) ≤ γ

d∑
i=1

|ηi − ξi|,

from which we conclude that p is continuous.

Since Kp is the inverse image of a closed set {λ ≤ 1} ⊂ R
d, it is closed. Let

S
d−1 =

{
x : ‖x‖ = 1

}
be the unit sphere in R

d. Since p(x) > 0 for every x ∈ S
d−1

and since p is continuous, there exists a number δ > 0 such that p(x) > δ for all

x ∈ S
d−1. It follows then that ‖x‖ ≤ δ−1 for every x ∈ Kp. Hence Kp is bounded

and therefore Kp is compact.

It remains to show that Kp contains the origin in its interior. Since p is contin-

uous, there is a number β > 0 such that p(x) ≤ β for all x ∈ S
d−1. Then p(x) ≤ 1

for all x such that ‖x‖ ≤ 1/β.

0
K

x

Figure 63. Example: pK(x) = 1.5

Conversely, let K ⊂ R
d be a convex body symmetric about the origin and let

pK(x) = inf
{
λ > 0 : x ∈ λK

}
.

Let us prove that pK(x + y) ≤ pK(x) + pK(y) (all the remaining properties are

relatively straightforward). Letting pK(x) = λ1 and pK(y) = λ2, we observe that

for any ε > 0, we have x ∈ (λ1 + ε)K and y ∈ (λ2 + ε)K. From Problem 4, Section

I.1.5, we conclude that x+ y ∈ (λ1 + λ2 + 2ε)K. Hence pK(x+ y) ≤ λ1 + λ2 + 2ε
and since ε > 0 was arbitrary, we conclude that pK(x+ y) ≤ λ1 +λ2 = p(x)+ p(y).
�

PROBLEMS.

1. Let V be a vector space and let p : V −→ R be a norm. Let

Kp =
{
x ∈ V : p(x) ≤ 1

}
.

Prove that Kp is a convex set, symmetric about the origin, which does not contain

straight lines and such that
⋃

λ≥0(λKp) = V . Conversely, let K ⊂ V be a convex
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set, symmetric about the origin, which does not contain straight lines and such that⋃
λ>0(λK) = V . For x ∈ V let pK(x) = inf{λ > 0 : x ∈ λK}. Prove that pK is a

norm.

2◦. Prove that pKp
= p for any norm p : V −→ R.

3. Let E ⊂ R
d be an ellipsoid centered at the origin. Prove that pE(x) =

√
q(x)

for some positive definite quadratic form q : Rd −→ R.

4. Let p : Rd −→ R be a norm. Prove that there exists a positive definite

quadratic form q : Rd −→ R such that
√

q(x) ≤ p(x) ≤
√

dq(x) for all x ∈ R
d.

Hint: Combine Theorem 2.5, Lemma 3.2 and Problem 3 above.

5. Let p : Rd −→ R be a norm and let S =
{
x ∈ R

d : p(x) = 1
}
. Prove that

for any δ > 0 there is a subset N ⊂ S consisting of not more than (1+2/δ)d points

such that for every x ∈ S there exists y ∈ N such that p(x− y) ≤ δ. The set N is

called a δ-net of p.

Hint: Choose N to be the maximal subset N ⊂ S with the property that

p(x− y) > δ for all x, y ∈ N .

Problem 4 of Section 3.2 tells us that an arbitrary norm in R
d can be approx-

imated by a square root of a quadratic form up to a certain factor depending on

the dimension d alone (equivalently, a convex body symmetric about the origin

can be approximated by an ellipsoid). The question we are going to address now

is whether we can get a better approximation by using higher degree polynomials

(equivalently, whether we can obtain better approximations of a convex body by

using higher degree algebraic hypersurfaces). As a preparation, we need to review

some linear algebra.

(3.3) Tensor powers. By the n-th tensor power

W = R
d ⊗ . . .⊗ R

d

︸ ︷︷ ︸
n times

of Euclidean space R
d we mean the space of all d× . . .× d arrays (tensors)

x =
(
ξi1...in : 1 ≤ i1, . . . , in ≤ d

)

of real numbers (coordinates) ξi1...in . Coordinatewise addition of arrays and mul-

tiplication of an array by a number make W a dn-dimensional vector space. In

particular, Rd ⊗R
d can be thought of as the space of all (real) d× d matrices. We

introduce the scalar product

〈x, y〉 =
∑

1≤i1,... ,in≤d

ξi1...inηi1...in where x =
(
ξi1...in

)
and y =

(
ηi1...in

)

thus making W a Euclidean space which can be identified with R
dn

.

Let x1, . . . , xn be vectors from R
d, xi = (ξi1, . . . , ξid). We write x1 ⊗ . . .⊗ xn

for the tensor

c =
(
γi1...in

)
where γi1...in = ξ1i1 · · · ξnin .
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There is an identity

〈
x1 ⊗ . . .⊗ xn, y1 ⊗ . . .⊗ yn

〉
=

n∏
i=1

〈xi, yi〉 for xi, yi ∈ R
d,

where the scalar product in the left-hand side is taken in W and the scalar products

in the right-hand side are taken in R
d.

We are interested in the subspace Sym(W ) of W consisting of the tensors

x =
(
ξi1...in

)
whose coordinates ξi1,... ,in depend only on the multiset {i1, . . . , in}

but not on the order of the indices in the sequence i1, . . . , in, that is

ξi1...in = ξj1...jn

provided i1 . . . in is a permutation of j1 . . . jn. Thus the value of ξi1...in depends on

how many 1’s, 2’s, . . . , d’s are among the indices i1, . . . , in. Hence the dimension

of W is equal to the number of non-negative integer solutions of the equation

k1 + . . .+ kd = n, that is,

dimSym(W ) =

(
n+ d− 1

n

)
.

Finally, we observe that for any x ∈ R
d, the tensor

x⊗n = x⊗ . . .⊗ x︸ ︷︷ ︸
n times

lies in Sym(W ).

PROBLEMS.

1◦. Let us identify R
d ⊗ R

d with the space V of d × d matrices. Show that

the scalar product in R
d ⊗ R

d is defined by 〈A,B〉 = tr(ABt). Show that Sym(V )

consists of the symmetric d×d matrices and that x⊗x are the positive semidefinite

matrices whose rank does not exceed 1.

2. Let u1, . . . , um be points in R
d. Consider the points

vi = ui ⊗ ui for i = 1, . . . ,m

in W = R
d ⊗ R

d. Let P = conv(vi : i = 1, . . . ,m). Let L ⊂ U be a subspace

(hence 0 ∈ L) and let I ⊂ {1, . . . ,m} be the set of all i such that ui ∈ L. Prove

that conv(vi : i ∈ I) is a face of P .

3◦. Let B =
{
x ∈ R

d : ‖x‖ ≤ 1
}
be the unit ball. Prove that

‖y‖ = max
x∈B

〈y, x〉 for all y ∈ R
d.

Now we can prove that by using higher degree polynomials, we can approximate

the norm better.
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(3.4) Theorem. Let p : Rd −→ R be a norm. For any integer n ≥ 1 there exists
a homogeneous polynomial q : Rd −→ R of degree 2n such that

1. The polynomial q is a sum of squares:

q =
∑
i∈I

q2i ,

where qi : R
d −→ R are homogeneous polynomials of degree n. In particular,

q(x) ≥ 0 for all x ∈ R
d.

2. For all x ∈ R
d

q
1
2n (x) ≤ p(x) ≤

(
n+ d− 1

n

) 1
2n

q
1
2n (x).

Proof. Let K = Kp = {x : p(x) ≤ 1}. Then, by Lemma 3.2, K is a convex body

in R
d symmetric about the origin. Let K◦ be the polar of K. Then K◦ is also a

convex body symmetric about the origin. Applying Theorem IV.1.2 (the Bipolar

Theorem), we can write

K =
{
x : 〈x, y〉 ≤ 1 for all y ∈ K◦

}
.

By Problem 2 of Section 3.2, we can write

p(x) = inf
{
λ > 0 : x ∈ λK

}

= inf
{
λ > 0 : λ−1x ∈ K

}

= inf
{
λ > 0 : λ−1〈x, y〉 ≤ 1 for all y ∈ K◦}

= inf
{
λ > 0 : 〈x, y〉 ≤ λ for all y ∈ K◦}.

Finally,

(3.4.1) p(x) = max
y∈K◦

〈x, y〉 = max
y∈K◦

|〈x, y〉|.

Let

W = R
d ⊗ . . .⊗ R

d

︸ ︷︷ ︸
n times

= R
dn

.

For a vector x ∈ R
d, let

x⊗n = x⊗ . . .⊗ x︸ ︷︷ ︸
n times

∈ W.

Hence we have 〈x⊗n, y⊗n〉 =
(
〈x, y〉
)n

; cf. Section 3.3. From (3.4.1), we can write

pn(x) = max
y∈K◦

〈x⊗n, y⊗n〉 = max
y∈K◦

|〈x⊗n, y⊗n〉|.

Let

A = conv
(
y⊗n,−y⊗n : y ∈ K◦) ⊂ W.
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Thus

(3.4.2) pn(x) = max
z∈A

〈x⊗n, z〉.

Since the map y �−→ y⊗n is continuous and K◦ is compact, by Corollary I.2.4, the

set A is compact. Moreover, A is symmetric about the origin. Since y⊗n ∈ Sym(W )

for all y ∈ R
d (cf. Section 3.3), we have A ⊂ Sym(W ). Therefore,

dimA ≤
(
n+ d− 1

n

)
.

Let E be the maximum volume ellipsoid of A in the affine hull of A. Then, by

Theorem 2.5,

(3.4.3) E ⊂ A ⊂
(
n+ d− 1

n

)1/2
E.

Let us define

f(x) = max
z∈E

〈x⊗n, z〉.

We claim that q(x) = f2(x) is a polynomial satisfying Parts 1 and 2 of the theorem.

Indeed, let B be the standard unit ball in W :

B =
{
(γi1...in) :

∑
1≤i1,... ,in≤d

γ2
i1...in ≤ 1

}
.

Since E is an ellipsoid (in the affine hull of A), there is a (non-invertible) linear

transformation T of W such that T (B) = E. Then

f(x) =max
z∈E

〈x⊗n, z〉 = max
u∈B

〈x⊗n, T (u)〉

=max
u∈B

〈T ∗(x⊗n), u〉 = ‖T ∗(x⊗n)‖,

where ‖ ·‖ is the standard Euclidean norm in W ; cf. Problem 3 of Section 3.3. Now

the coordinates of x⊗n are the monomials of degree n in the coordinates of x ∈ R
d

and hence the coordinates of T ∗(x⊗n) are homogeneous polynomials qi1...in(x) of

degree n in the coordinates of x. Hence Part 1 follows. Part 2 follows by (3.4.2)

and (3.4.3). �

Choosing, for example, n = d in Theorem 3.4, we conclude that any norm

p : Rd −→ R can be approximated by the 2d-th root of a polynomial q of degree 2d

within a factor of
(
2d−1

d

)1/2d ≤ 2.

PROBLEMS.

1◦. Show that for any ε > 0 there exists an even m = m(ε) such that for any

sufficiently large d ≥ d(ε) and any norm p : Rd −→ R there exists a homogeneous

polynomial q : Rd −→ R of degree m such that q(x) ≥ 0 for all x ∈ R
d and

q1/m(x) ≤ p(x) ≤ ε
√
d · q1/m(x) for all x ∈ R

d.
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2. Let p : Rd −→ R be the �1 norm,

p(ξ1, . . . , ξd) = |ξ1|+ . . .+ |ξd|,

and let q : Rd −→ R be a homogeneous polynomial of degree 6 such that q(x) ≥ 0

for all x ∈ R
d and

q1/6(x) ≤ p(x) ≤ C(d)q1/6(x) for all x ∈ R
d,

where C(d) is some constant. Prove that C(d) ≥ c
√
d for some absolute constant

c > 0.

3◦. Show that for any α > 1 there exists β = β(α) > 0 such that for any

norm p : Rd −→ R there exists a homogeneous polynomial q : Rd −→ R such that

m = deg q ≤ βd, q(x) ≥ 0 for all x ∈ R
d and

q1/m(x) ≤ p(x) ≤ αq1/m(x) for all x ∈ R
d.

4◦. In the context of Theorem 3.4, assume that p satisfies all the requirements of

Definition 3.1 except, perhaps, that p(x) = 0 implies x = 0. LetK =
{
x : p(x) ≤ 1

}
and let K◦ be the polar of K. Let D = dim span

(
x⊗n : x ∈ K◦). Check that

q
1
2n (x) ≤ p(x) ≤ D

1
2n q

1
2n (x) for all x ∈ R

d.

5. Let Hk,d be the vector space of all homogeneous real polynomials of degree

k in d variables x = (ξ1, . . . , ξd), so dimHk,d =
(
k+d−1

k

)
. Let K ⊂ R

d be a compact

set symmetric about the origin. Let p : Hk,d −→ R be defined by

p(f) = max
x∈K

|f(x)| for f ∈ Hk,d.

Prove that for any integer n ≥ 1 there is a homogeneous polynomial q : Hk,d −→ R

of degree 2n such that q(f) ≥ 0 for all f ∈ Hk,d and

q
1
2n (f) ≤ p(f) ≤

(
kn+ d− 1

d− 1

) 1
2n

q
1
2n (f) for all f ∈ Hk,d.

Hint: Use Problem 4 above.

6◦. Let p : Rd −→ R be the �∞ norm,

p(ξ1, . . . , ξd) = max
i=1,... ,d

|ξi|.

For a positive integer n, let us define a polynomial q : Rd −→ R by

q(ξ1, . . . , ξd) =
d∑

i=1

ξ2ni .
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Prove that

q
1
2n (x) ≤ p(x) ≤ d

1
2n q

1
2n (x) for all x ∈ R

d.

7. Let H2,d be the vector space of all quadratic forms q : Rd −→ R and let

S
d−1 ⊂ R

d be the unit sphere. Let p : H2,d −→ R be defined by

p(f) = max
x∈Sd−1

|f(x)| for f ∈ H2,d.

Prove that for any positive integer n there exists a homogeneous polynomial

q : H2,d −→ R of degree 2n such that q(f) ≥ 0 for all f ∈ H2,d and

q
1
2n (f) ≤ p(f) ≤ d

1
2n q

1
2n (f) for all f ∈ H2,d.

The next two problems require some representation theory.

8. Let G be a compact subgroup of the group of orthogonal transformations of

R
d. Let v ∈ R

d be a vector and let

Ov =
{
g(v) : g ∈ G

}

be the orbit of v. Let us define a function p : Rd −→ R by

p(x) = max
g∈G

∣∣〈x, g(v)
〉∣∣.

Let dg be the Haar probability measure on G and let us define the quadratic form

q : Rd −→ R by

q(x) =

∫

G

〈
x, g(v)

〉2
dg.

Prove that √
q(x) ≤ p(x) ≤

√
d
√
q(x) for all x ∈ R

d

and that, more precisely,

√
q(x) ≤ p(x) ≤

√
dim span

(
Ov

)√
q(x) for all x ∈ R

d.

Hint: Note that the eigenspaces of q are G-invariant subspaces of V .

9. In Problem 8 above, for an integer n > 0, let us define a polynomial

q : Rd −→ R by

q(x) =

∫

G

〈
x, g(v)

〉2n
dg

(thus n = 1 in Problem 8). Deduce from Problem 8 that

q
1
2n (x) ≤ p(x) ≤

(
d+ n− 1

n

) 1
2n

q
1
2n (x) for all x ∈ R

d,
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and that, more precisely,

q
1
2n (x) ≤ p(x) ≤

(
dim spanOv⊗n

) 1
2n

q
1
2n (x) for all x ∈ R

d,

where Ov⊗n =
{(

g(v)
)⊗n

: g ∈ G
}
is the orbit of v⊗n ∈ (Rd)⊗n.

10. In Problem 5 above, let

K = S
d−1 =

{
x ∈ R

d : ‖x‖ = 1
}

be the unit sphere. Using Problem 9, show that one can choose

q(f) =

∫

Sd−1

f2n(x) dx,

where dx is the rotation invariant probability measure on S
d−1.

4. The Ellipsoid Method

In this section, we briefly describe a method for finding a solution to a system of

linear inequalities. The method, known as the Ellipsoid Method, was first developed
by N.Z. Shor, A.S. Nemirovskii and L.G. Khachiyan. In 1979, L.G. Khachiyan

applied it to solving linear inequalities and problems of linear programming. It

resulted in the first polynomial time algorithm in linear programming, see [Schr86],

[PS98], [GLS93].

(4.1) Systems of linear inequalities. Suppose we are given a system of linear

inequalities

〈ai, x〉 < βi, i = 1, . . . ,m,

where ai ∈ R
d are given real vectors and βi are given real numbers. We do not

discuss how numbers and vectors may be “given” (cf. Chapter 1 of [GLS93]); for

example, we assume that βi and all the coordinates of ai are rational numbers.

Also, the method can be modified for systems of non-strict inequalities, but we

don’t discuss it here.

Our goal is to find a vector x ∈ R
d satisfying (4.1) or to show that none exists.

We would like to be able to do that reasonably fast. The method is based on the

following geometric result.

(4.2) Lemma. Let

B+ =
{
(ξ1, . . . , ξd) ∈ R

d : ξ21 + . . .+ ξ2d ≤ 1 and ξd ≥ 0
}

be the “upper half” of the unit ball B. Let

E =

{
(ξ1, . . . , ξd) ∈ R

d :
d2 − 1

d2
ξ21+. . .+

d2 − 1

d2
ξ2d−1+

(d+ 1)2

d2

(
ξd−

1

d+ 1

)2
≤ 1

}

be an ellipsoid. Then
1. B+ ⊂ E;

2.
volE

volB
≤ exp

{
− 1

2(d+ 1)

}
.
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E

B+

�

�

0
1

2

Figure 64

Proof. Let us choose an x ∈ B+, x = (ξ1, . . . , ξd). Then ξ21 + . . .+ ξ2d−1 ≤ 1− ξ2d,
so

d2 − 1

d2

(
ξ21 + . . .+ ξ2d−1

)
≤ d2 − 1

d2
− d2 − 1

d2
ξ2d.

Furthermore,

(d+ 1)2

d2

(
ξd −

1

d+ 1

)2
=

(d+ 1)2

d2
ξ2d −

2(d+ 1)

d2
ξd +

1

d2
.

Adding the two inequalities together, we get

d2 − 1

d2
ξ21 + . . .+

d2 − 1

d2
ξ2d−1 +

(d+ 1)2

d2

(
ξd −

1

d+ 1

)2
≤ 1 +

2d+ 2

d2

(
ξ2d − ξd

)
≤ 1,

since ξ2d − ξd ≤ 0 for 0 ≤ ξd ≤ 1. Hence Part 1 is proven.

To prove Part 2, we note that

volE

volB
=

d

d+ 1

( d2

d2 − 1

)(d−1)/2

.

Using the inequality 1+ x ≤ exp{x} for x = −1/(d+1) and for x = 1/(d2 − 1), we

get
volE

volB
≤ exp

{
− 1

d+ 1

}
exp
{d− 1

2
· 1

d2 − 1

}
= exp

{
− 1

2(d+ 1)

}
.

�
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PROBLEMS.

1◦. Check that the boundary of the ellipsoid E constructed in Lemma 4.2

contains the “great circle”
{
(ξ1, . . . , ξd−1, 0) : ξ

2
1 + . . . + ξ2d−1 = 1

}
and the point

(0, . . . , 0, 1).

2◦. Let E ⊂ R
d be an ellipsoid centered at c ∈ R

d and let a ∈ R
d be a non-zero

vector. Consider the “half-ellipsoid” E− =
{
x ∈ E : 〈a, x〉 ≤ 〈a, c〉

}
. Construct an

ellipsoid E1 ⊂ R
d such that E− ⊂ E1 and

volE1

volE
≤ exp

{
− 1

2(d+ 1)

}
.

(4.3) The description of the method. Let P =
{
x : 〈ai, x〉 < βi, i = 1, . . . ,m

}
be the set of all solutions to the system of (4.1). Suppose we know a pair of real

numbers R > r > 0 with the following property:

If P is non-empty, then for some (hitherto unknown) point x0 ∈ P we have

B(x0, r) ⊂ P ∩ B(0, R), where B(b, ρ) = {x : ‖x − b‖ < ρ} is the (open) ball of

radius ρ centered at a point b.

0

R

r
P

x
0

Figure 65

In other words, if there is a solution, then there is a solution in a sufficiently

large ball and the set of solutions is sufficiently “thick”. The numbers R and r can

be determined from the numerical data (see Problems below). The ratio R/r can

be thought of as the “condition number” of the problem (the problems with a large

ratio R/r are “ill-conditioned”).

We construct a sequence of ellipsoids E0, . . . , Ek, . . . which satisfy the proper-

ties:
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1. If P is non-empty, then B(x0, r) ⊂ Ek for all k and

2.
volEk−1

volEk
≤ exp

{
− 1

2(d+ 1)

}
for all k ≥ 1.

We let E0 = B(0, R). If Ek is constructed, we check whether its center ck
satisfies the system (4.1). If it does, then a feasible point x = ck is constructed. If

not, we pick an inequality violated on ck, say, 〈ai0 , ck〉 ≥ βi0 . Let

E−
k =
{
x ∈ Ek : 〈ai0 , x〉 ≤ 〈ai0 , ck〉

}

be the “half ellipsoid” which contains solutions if they exist. Using Problem 2 of

Section 4.2, we construct an ellipsoid Ek+1 containing E−
k and such that

volEk+1

volEk
≤ exp

{
− 1

2(d+ 1)

}
.

E

x

k

k

0

c

c

c
k + 1

x
0

x
0

a )

b )

E
c )

E
k
-

k + 1k

Figure 66. a) If the center ck of the current ellipsoid Ek does not

satisfy the linear inequalities, we construct the half ellipsoid E−
k which

contains the solutions. b) We construct the ellipsoid Ek+1 containing

E−
k . c) We check whether the center ck+1 of the ellipsoid Ek+1 satisfies

the linear inequalities and proceed as above with Ek replaced by Ek+1.

We continue until we either hit a solution or volEk < volB(x0, r), in which case

we conclude that there are no solutions. Since each time the volume of the ellipsoid
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decreases by a factor of exp{1/(2d + 2)}, the total number of the constructed

ellipsoids does not exceed

(2d+ 2) ln
volB(x0, R)

B(x0, r)
= 2d(d+ 1) ln

R

r
.

Hence the number of iterations is quadratic in the dimension d and linear in the

logarithm of the “condition number” R/r. From the computational complexity

point of view, this means that the running time of the algorithm is polynomial in

the “size of the input”.

PROBLEMS.

In the problems below, for a matrix A = (αij), we let LA = maxij |αij | and
for a vector b = (β1, . . . , βm), we let Lb = maxk |βk|. We do not aim for the best

possible bounds here but want to convey a general flavor of the estimates.

1. Let A = (αij) be an invertible n× n integer matrix and let b = (β1, . . . , βn)

be an integer n-vector. Let x = (ξ1, . . . , ξn) be the (necessarily unique) solution to

the system of linear equations

n∑
i=1

αijξj = βi for i = 1, . . . , n.

Prove that ξj = pj/q are rational numbers, where pj and q are integers with 1 ≤
q ≤ nn/2Ln

A and |pj | ≤ nn/2LbL
n−1
A for j = 1, . . . , n.

Hint: Use Cramer’s rule and Hadamard’s inequality for determinants.

2. Let A = (αij) be an m × d real matrix and let b = (β1, . . . , βm) be a real

m-vector. Prove that a solution x = (ξ1, . . . , ξd) to the system

(4.3.1)

d∑
j=1

αijξj ≤ βi for i = 1, . . . ,m

of linear inequalities exists if and only if there exists a solution u = (η′1, . . . , η
′
d;

η′′1 , . . . , η
′′
d ; ζ1, . . . , ζm) to the system

(4.3.2)

d∑
j=1

αij(η
′
j − η′′j ) = βi − ζi for i = 1, . . . ,m,

η′j , η
′′
j ≥ 0 for j = 1, . . . , d,

ζi ≥ 0 for i = 1, . . . ,m

of linear inequalities. Prove that if the set U of solutions u to the system (4.3.2) is

non-empty, then U has an extreme point.

Hint: Use Lemma II.3.5.

3. Let A = (αij) be a (non-zero) m×d integer matrix and let b = (β1, . . . , βm)

be an integer vector. Suppose that the set of solutions U to the system (4.3.2) is
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non-empty and let u = (η′1, . . . , η
′
d; η

′′
1 , . . . , η

′′
d ; ζ1, . . . , ζm) be an extreme point of

U . Prove that each coordinate of u is a rational number which can be represented

in the form pj/q, where pj and q are integers with 1 ≤ q ≤ (2d +m)d+m/2L2d+m
A

and |pj | ≤ (2d+m)d+m/2LbL
2d+m−1
A for j = 1, . . . , 2d+m.

Hint: Use Problem 1 and Theorem II.4.2.

4. Let A = (αij) be a (non-zero) m×d integer matrix and let b = (β1, . . . , βm)

be an integer vector. Suppose that the system (4.3.1) of Problem 2 has a solution.

Prove that there exists a solution (ξ1, . . . , ξd) with ξj = pj/q, where pj and q are

integers such that 1 ≤ q ≤ (2d+m)d+m/2L2d+m
A and |pj | ≤ 2(2d+m)d+m/2LbL

2d+m
A

for j = 1, . . . , d.

Hint: Use Problems 2 and 3.

5. Let A = (αij) be a k × d integer matrix. Suppose that the system

(4.3.3)

d∑
j=1

αijξj < 0 for i = 1, . . . , k

has a solution x = (ξ1, . . . , ξd). Prove that there exists a solution (ξ1, . . . , ξd) with

ξj = pj/q, where pj and q are integers such that 1 ≤ q ≤ (2d+ k)(d+k/2)kL
(2d+k)k
A

and |pj | ≤ 2k(2d+ k)(d+k/2)kL
(2d+k)k
A for j = 1, . . . , d.

Hint: For i0 = 1, . . . , ik consider the modified system

d∑
j=1

αijξj ≤ 0 for i �= i0;

d∑
j=1

αi0jξj = −1.

Let xi0 be its solution that exists in view of Problem 4 and let x be the sum of xi0

for i0 = 1, . . . , k.

6. Let A = (αij) be an m × d integer matrix and let b = (β1, . . . , βm) be an

integer vector. Suppose that the system

(4.3.4)

d∑
j=1

αijξj < βj for i = 1, . . . ,m

of strict linear inequalities has a solution x = (ξ1, . . . , ξd) and ξj = pj/q, where
1 ≤ q and pj are integers. Prove that the set of solutions contains an (open) ball

of radius (qLA

√
d)−1 centered at x.

7. Suppose that the system (4.3.4) has a solution. Prove that there exists a

solution (ξ1, . . . , ξj) with ξj = pj/q, where pj and q are integers such that

1 ≤ q ≤ 4dm(2d+m)(d+m/2)(2m+1)L
(2d+m)(2m+1)+1
A and

|pj | ≤ 16dm(2d+m)(d+m/2)(2m+1)LbL
(2d+m)(2m+1)+1
A

for j = 1, . . . , d.
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Hint: Let x0 = (ξ1, . . . , ξd) be the solution to (4.3.1) whose existence is asserted

by Problem 4 and let I =
{
i :
∑d

j=1 αijξj = βi

}
. Let y = (η1, . . . , ηd) be the

solution to the system

d∑
j=1

αijηj < 0, i ∈ I,

whose existence is asserted by Problem 5. Consider x = x0+εy for a suitable ε > 0;

see Figure 67.

0

x y

x
0

Figure 67

8. Let A be an m× d integer matrix and let b be an integer vector. Show that

to solve the system (4.3.4) of linear inequalities by the Ellipsoid Method 4.3, one

can choose

r =
1

4
d−3/2m−1(2d+m)−(d+m/2)(2m+1)L

−(2d+m)(2m+1)−2
A and

R = 4
√
d(2d+m)d+m/2LbL

2d+m
A .

Hint: Use Problems 4, 6 and 7.

We note that lnR is bounded by a polynomial in lnLA, lnLb, d and m whereas

ln r−1 is bounded by a polynomial in lnLA, d and m only, thus being independent

of b.

One more problem.

9∗. Let A1, . . . , Ak be n×n symmetric matrices and let β1, . . . , βk be numbers.

Develop a version of the Ellipsoid Method for the problem of finding an n×n positive

definite matrix X such that 〈Ai, X〉 = βi for i = 1, . . . , k.
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232 V. Convex Bodies and Ellipsoids

5. The Gaussian Measure on Euclidean Space

The purpose of the next three sections is to introduce the technique of measure
concentration, which turns out to be quite useful in exploring metric properties of

convex bodies. We start with the Gaussian measure on Euclidean space.

(5.1) The standard Gaussian measure on R. Let us consider the standard
univariate Gaussian density

1√
2π

exp
{
−ξ2/2

}
for ξ ∈ R.

As is known,

1√
2π

∫ +∞

−∞
exp
{
−ξ2/2

}
dξ = 1,

hence we can define a probability measure γ, called the standard Gaussian measure,
on the real line R:

γ(A) =
1√
2π

∫

A

exp
{
−ξ2/2

}
dξ

for a Borel set A ⊂ R.

PROBLEMS.

1◦. Prove that

1√
2π

∫ +∞

−∞
exp
{
−λξ2
}
dξ = λ−1/2 for any λ > 0.

2◦. Prove that
1√
2π

∫ +∞

−∞
ξ2 exp

{
−ξ2/2

}
dξ = 1.

3◦. Prove that

1√
2π

∫ +∞

−∞
exp
{
λξ − ξ2/2

}
dξ = exp

{
λ2/2
}

for any λ.

Hint: Substitute ξ = (ξ′ + λ).

4◦. Prove that γ(A) = γ(−A) for any Borel set A ⊂ R.

The following lemma, while providing us with a simple and useful estimate,

introduces a general and powerful technique for estimating “tails”, which we will

use several times in this section.

(5.2) Lemma. For τ ≥ 0, let

Aτ =
{
ξ ∈ R : ξ ≥ τ

}
and Bτ =

{
ξ ∈ R : ξ ≤ −τ

}
.

Then
γ
(
Aτ

)
= γ
(
Bτ ) ≤ exp

{
−τ2/2

}
.
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Proof. Let us choose λ ≥ 0 (to be adjusted later). Then

ξ ≥ τ implies exp
{
λξ
}
≥ exp

{
λτ
}
.

Therefore,

(5.2.1)

1√
2π

∫ +∞

−∞
exp
{
λξ
}
exp
{
−ξ2/2

}
dξ

≥ 1√
2π

∫

Aτ

exp
{
λξ
}
exp
{
−ξ2/2

}
dξ

≥ exp
{
λτ
}
· 1√

2π

∫

Aτ

exp
{
−ξ2/2

}
dξ = γ(Aτ ) · exp

{
λτ
}
.

By Problem 3 of Section 5.1,

1√
2π

∫ +∞

−∞
exp
{
λξ
}
exp
{
−ξ2/2

}
dξ = exp

{
λ2/2
}
.

Therefore, from (5.2.1) we conclude that

γ(Aτ ) ≤ exp
{
λ2/2
}
· exp
{
−λτ
}
= exp

{
λ2/2− λτ

}
.

Substituting λ = τ , we obtain the desired bound for γ(Aτ ). Since Bτ = −Aτ , by

Problem 4 of Section 5.1 we obtain γ(Bτ ) = γ(Aτ ). �

(5.3) The standard Gaussian measure on R
n. Let us consider the standard

Gaussian density in R
n:

(2π)−n/2 exp
{
−‖x‖2/2

}
=

n∏
i=1

1√
2π

exp
{
−ξ2i /2

}
for x = (ξ1, . . . , ξn) ∈ R

n.

Thus

(2π)−n/2

∫

Rn

exp
{
−‖x‖2/2

}
dx = 1.

Hence we can define a probability measure γn on R
n:

γn(A) = (2π)−n/2

∫

A

exp
{
−‖x‖2/2

}
dx

for a Borel set A ⊂ R
n. The measure γn is called the standard Gaussian measure

on R
n.

PROBLEMS.

1◦. Let Q be an n × n symmetric matrix and let q : Rn −→ R be the corre-

sponding quadratic form, q(x) = 〈Qx, x〉 for x ∈ R
n. Prove that

(2π)−n/2

∫

Rn

q(x) exp
{
−‖x‖2/2

}
dx = tr(Q).
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Hint: Use Problem 2 of Section 5.1.

2◦. Let Q be an n × n positive definite matrix and let q : Rn −→ R be the

corresponding quadratic form, q(x) = 〈Qx, x〉 for x ∈ R
n. Prove that

(2π)−n/2

∫

Rn

exp
{
−q(x)/2

}
dx =
(
detQ
)−1/2

.

Hint: Applying an orthogonal transformation of the coordinates, reduce to the

case of a diagonal matrix Q and use Problem 1 of Section 5.1.

The measure γn has some interesting properties; see Sections 4.1–4.3 of [Bo98]

for Problems 3 and 4 below.

3. Let A,B ⊂ R
n be convex bodies and let α, β ≥ 0 be numbers such that

α+β = 1. From Problem 2 of Section 1.3, deduce the Brunn-Minkowski inequality:

ln γn(αA+ βB) ≥ α ln γn(A) + βγn(B).

4∗. Let B =
{
x ∈ R

n : ‖x‖ ≤ 1
}
be the unit ball. Let A ⊂ R

n be a closed set

and let H ⊂ R
n be a halfspace such that γn(A) = γn(H). Prove the isoperimetric

inequality: γn(A+ ρB) ≥ γn(H + ρB) for all ρ ≥ 0.

Equivalently, if

γn(A) =
1√
2π

∫ α

−∞
exp
{
−ξ2/2

}
dξ for a suitable α ∈ R,

then

γn(A+ ρB) ≥ 1√
2π

∫ α+ρ

−∞
exp
{
−ξ2/2

}
dξ.

5◦. Prove that γn(A) = γ
(
U(A)
)
for any Borel set A ⊂ R

n and any orthogonal

transformation U : Rn −→ R
n.

Now we prove that if the dimension n is large, then “almost all” measure γn is

concentrated in the vicinity of the sphere ‖x‖ =
√
n. The method of the proof is

similar to that of the proof of Lemma 5.2.

(5.4) Proposition.

1. For any δ ≥ 0

γn

{
x ∈ R

n : ‖x‖2 ≥ n+ δ
}
≤
( n

n+ δ

)−n/2

exp
{
−δ/2
}
.

2. For any 0 < δ ≤ n

γn

{
x ∈ R

n : ‖x‖2 ≤ n− δ
}
≤
( n

n− δ

)−n/2

exp
{
δ/2
}
.
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Proof. To prove Part 1, let us choose λ ∈ [0, 1] (to be adjusted later). Then

‖x‖2 ≥ n+ δ implies exp
{
λ‖x‖2/2

}
≥ exp

{
λ(n+ δ)/2

}
.

We observe that

(5.4.1)

(2π)−n/2

∫

Rn

exp
{
λ‖x‖2/2

}
exp
{
−‖x‖2/2

}
dx

≥ γn

{
x ∈ R

n : exp
{
λ‖x‖2

}
≥ exp

{
λ(n+ δ)/2

}}
· exp
{
λ(n+ δ)/2

}

≥ γn

{
x ∈ R

n : ‖x‖2 ≥ n+ δ
}
· exp
{
λ(n+ δ)/2

}
.

Evaluating the integral in the left-hand side, we obtain

(2π)−n/2

∫

Rn

exp
{
λ‖x‖2/2

}
exp
{
−‖x‖2/2

}
dx

=

(
1√
2π

∫ +∞

−∞
exp
{
−(1− λ)ξ2/2

}
dξ

)n
= (1− λ)−n/2;

cf. Problem 1 of Section 5.1.

Hence from (5.4.1) we conclude that

γn

{
x ∈ R

n : ‖x‖2 ≥ n+ δ
}
≤ (1− λ)−n/2 exp

{
−λ(n+ δ)/2

}
.

Now we choose λ = δ/(n+ δ) and Part 1 follows.

To prove Part 2, let us choose λ > 0 (to be adjusted later). Then

‖x‖2 ≤ n− δ implies exp
{
−λ‖x‖2/2

}
≥ exp

{
−λ(n− δ)/2

}
.

We observe that

(5.4.2)

(2π)−n/2

∫

Rn

exp
{
−λ‖x‖2/2

}
exp
{
−‖x‖2/2

}
dx

≥ γn

{
x ∈ R

n : ‖x‖2 ≥ n− δ
}
· exp
{
−λ(n− δ)/2

}
.

The right-hand side integral of (5.4.2) evaluates to (1+λ)−n/2. Hence from (5.4.2)

we get:

γn

{
x ∈ R

n : ‖x‖2 ≥ n− δ
}
≤ (1 + λ)−n/2 exp

{
λ(n− δ)/2

}
.

Substituting λ = δ/(n− δ), we complete the proof of Part 2. �

For practical purposes, the following weaker estimates are more convenient.
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(5.5) Corollary. For any 0 < ε < 1

γn

{
x ∈ R

n : ‖x‖2 ≥ n

1− ε

}
≤ exp

{
−ε2n/4

}
,

γn

{
x ∈ R

n : ‖x‖2 ≤ (1− ε)n
}
≤ exp

{
−ε2n/4

}
.

Proof. Let us choose δ = εn/(1− ε) in Part 1 of Proposition 5.4. Then

( n

n+ δ

)−n/2

exp
{
−δ/2
}
= exp

{
−n

2
ln(1− ε)− n

2

ε

1− ε

}
.

Expanding

ln(1− ε) = −ε− ε2/2− ε3/3− . . . and
1

1− ε
= 1 + ε+ ε2 + . . . ,

from Part 1 of Proposition 5.4, we get the desired bound

γn

{
x ∈ R

n : ‖x‖2 ≥ n

1− ε

}
≤ exp

{
−ε2n/4

}
.

Let us choose δ = εn in Part 2 of Proposition 5.4. Then

( n

n− δ

)−n/2

exp
{
δ/2
}
= exp

{n
2
ln(1− ε) +

nε

2

}
.

Expanding

ln(1− ε) = −ε− ε2/2− ε3/3− . . . ,

we obtain the desired estimate

γn

{
x ∈ R

n : ‖x‖2 ≤ (1− ε)n
}
≤ exp

{
−ε2n/4

}
.

�

Corollary 5.5 implies that for any sequence ρn −→ +∞, n = 1, 2, . . . , we have

γn

{
x ∈ R

n :
√
n− ρn ≤ ‖x‖ ≤

√
n+ ρn

}
−→ 1.

This is a concentration property of the Gaussian measure. Some other related

concentration properties are discussed in problems below.

PROBLEMS.

1. Let A ⊂ R
n be a closed set such that γn(A) = 1/2 and let B =

{
x ∈ R

n :

‖x‖ ≤ 1
}
. Deduce from Lemma 5.2 and Problem 4 of Section 5.3 the following

concentration inequality for the Gaussian measure γn on R
n:

γn(A+ ρB) ≥ 1− exp
{
−ρ2/2

}
.
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2. Let f : Rn −→ R be a function such that

|f(x)− f(y)| ≤ ‖x− y‖ for all x, y ∈ R
n.

Let α be the median of f , that is, α is a number such that

γn

{
x ∈ R

n : f(x) ≤ α
}
≥ 1

2
and γn

{
x ∈ R

n : f(x) ≥ α
}
≥ 1

2

(check that such an α indeed exists). Deduce from Problem 1 above the concentra-
tion inequality for Lipschitz functions:

γn

{
x ∈ R

n : |f(x)− α| ≤ ρ
}
≥ 1− 2 exp

{
−ρ2/2

}
for any ρ ≥ 0.

Remark: For this and related inequalities, see [Bo98] and [Le01].

We conclude this section with a concentration inequality for positive semidefi-

nite quadratic forms. The following result extends Proposition 5.4 and the proof is

very similar to that of Proposition 5.4.

(5.6) Proposition. Let q : Rn −→ R be a positive semidefinite quadratic form,
q(x) = 〈x,Qx〉 for an n× n positive semidefinite matrix Q.

Let μ1, . . . , μn be the eigenvalues of Q and let

‖Q‖ =
√
tr(Q2) =

√
μ2
1 + . . .+ μ2

n.

Then
1. for any τ ≥ 0 we have

γn

{
x ∈ R

n : q(x) < tr(Q)− τ‖Q‖
}
≤ exp

{
−τ2/4

}
;

2. for any τ ≥ 0 such that

τμi ≤ ‖Q‖ for i = 1, . . . , n

we have

γn

{
x ∈ R

n : q(x) > tr(Q) + τ‖Q‖
}
≤ exp

{
−τ2/8

}
.

Proof. Clearly, we may assume that Q �= 0.

To prove Part 1, let us choose λ ≥ 0 (to be adjusted later). Then

q(x) < tr(Q)− τ‖Q‖ implies exp
{
−λq(x)/2

}
≥ exp

{
−λ tr(Q)/2 + λτ‖Q‖/2

}
.
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We observe that

(5.6.1)

(2π)−n/2

∫

Rn

exp
{
−λq(x)/2

}
exp{−‖x‖2/2

}
dx

≥ γn

{
x ∈ R

n : q(x) < tr(Q)− τ‖Q‖
}
· exp
{
−λ tr(Q)/2 + λτ‖Q‖/2

}
.

By Problem 2 of Section 5.3, the integral in (5.6.1) evaluates to

−1/2

det (I + λQ) =

n∏
i=1

(1 + λμi)
−1/2,

where I is the identity matrix. Hence we deduce from (5.6.1) that

γn

{
x ∈ R

n : q(x) < tr(Q)− τ‖Q‖
}

≤
−1/2

det (I + λQ) · exp
{
λ tr(Q)/2− λτ‖Q‖/2

}

= exp

{
−1

2

n∑
i=1

ln(1 + λμi) + λ tr(Q)/2− λτ‖Q‖/2
}
.

Now we use that ln(1 + λμi) ≥ λμi − λ2μ2
i /2, that tr(Q) = μ1 + . . .+ μn and that

‖Q‖2 = μ2
1 + . . .+ μ2

n. Thus

γn

{
x ∈ R

n : q(x) < tr(Q)− τ‖Q‖
}

≤ exp

{
1

4

n∑
i=1

λ2μ2
i − λτ‖Q‖/2

}
= exp

{
λ2‖Q‖2/4− λτ‖Q‖/2

}
.

Substituting λ = τ/‖Q‖, we complete the proof of Part 1.

To prove Part 2, let us choose λ ≥ 0 (to be adjusted later). Then

q(x) > tr(Q) + τ‖Q‖ implies exp
{
λq(x)/2

}
≥ exp

{
λ tr(Q)/2 + λτ‖Q‖/2

}
.

We observe that

(5.6.2)

(2π)−n/2

∫

Rn

exp
{
λq(x)/2

}
exp
{
−‖x‖2/2

}
dx

≥ γn

{
x ∈ R

n : q(x) ≥ tr(Q) + τ‖Q‖
}
· exp
{
λ tr(Q)/2 + λτ‖Q‖/2

}
.

By Problem 2 of Section 5.3, the integral in (5.6.2) evaluates to

−1/2

det (I − λQ) =

n∏
i=1

(1− λμi),
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where I is the identity matrix. Hence we deduce from (5.6.2) that

γn

{
x ∈ R

n : q(x) > tr(Q) + τ‖Q‖
}

≤
−1/2

det (I − λQ) · exp
{
−λ tr(Q)/2− λτ‖Q‖/2

}

= exp

{
−1

2

n∑
i=1

ln(1− λμi)− λ tr(Q)/2− λτ‖Q‖/2
}
.

Now we use that ln(1 − λμi) ≥ −λμi − λ2μ2
i provided λμi ≤ 1/2, that tr(Q) =

μ1 + . . .+ μn and that ‖Q‖2 = μ2
1 + . . .+ μ2

n. Thus

γn

{
x ∈ R

n : q(x) > tr(Q) + τ‖Q‖
}

≤ exp

{
1

2

n∑
i=1

λ2μ2
i − λτ‖Q‖/2

}
= exp

{
λ2‖Q‖2/2− λτ‖Q‖/2

}
,

provided λμi ≤ 1/2 for i = 1, . . . , n. Substituting λ = τ/(2‖Q‖) and noting that

λμi =
τμi

2‖Q‖ ≤ 1

2
for i = 1, . . . , n,

we complete the proof. �

PROBLEMS.

1. Let q : Rn −→ R be a quadratic form, q(x) = 〈x,Qx〉 for an n×n symmetric

matrix Q. Let μ1, . . . , μn be the eigenvalues of Q and let ‖Q‖ =
√
μ2
1 + . . .+ μ2

n.

Prove that for any τ ≥ 0 such that |τμi| ≤ ‖Q‖ for i = 1, . . . , n, we have

γn

{
x ∈ R

n : q(x) < tr(Q)− τ‖Q‖
}
≤ exp

{
−τ2/8

}
and

γn

{
x ∈ R

n : q(x) > tr(Q) + τ‖Q‖
}
≤ exp

{
−τ2/8

}
.

2◦. Prove that tr(Q) ≥ ‖Q‖ for any positive semidefinite matrix Q.

3◦. Let A be an n× n positive semidefinite matrix and let Q be the mn×mn
matrix consisting of m diagonal blocks A. Prove that tr(Q) = m tr(A), ‖Q‖ =√
m‖A‖ and μ ≤ m−1/2‖Q‖ for every eigenvalue μ of Q.

4. Prove the following version of Part 2 of Proposition 5.6:

For every ε > 0 there exists δ > 0 such that

γn

{
x ∈ R

n : q(x) > tr(Q) + τ‖Q‖
}
≤ exp

{
−(1− ε)τ2/4

}

provided τ ≥ 0 and τμi ≤ δ‖Q‖ for i = 1, . . . , n.
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6. Applications to Low Rank Approximations of Matrices

In this section, we apply our methods to obtain new results regarding systems of

linear equations in positive semidefinite matrices, which we considered in Sections

II.13–15. We use the notation of Sections II.13–15. Thus 〈A,B〉 = tr(AB) for

symmetric matrices A and B; X � 0 means that X is positive semidefinite and

x⊗ x denotes the matrix X whose (i, j)-th entry is ξiξj , where x = (ξ1, . . . , ξn).

Proposition II.13.1 asserts, roughly, that if a system of k equations 〈Ai, X〉 = αi

has a solution X � 0, then there is a solution X0 � 0 such that rankX0 = O(
√
k).

Now we show that if we are willing to settle for an approximate solution, we can

make rankX0 = O(ln k). To state what “approximate” means, we assume that the

matrices Ai are positive semidefinite and so the αi are non-negative.

(6.1) Proposition. Let us fix k positive semidefinite n× n matrices A1, . . . , Ak,
k non-negative numbers α1, . . . , αk and 0 < ε < 1.

Suppose that there is a matrix X � 0 such that

〈Ai, X〉 = αi for i = 1, . . . , k.

Let m be a positive integer such that

m ≥ 8

ε2
ln(4k).

Then there is a matrix X0 � 0 such that

αi(1− ε) ≤ 〈Ai, X0〉 ≤ αi(1 + ε) for i = 1, . . . , k

and
rankX0 ≤ m.

Proof. First, we show that without loss of generality we may assume that X = I,
the identity matrix. Indeed, suppose that X � 0 satisfies the system

〈Ai, X〉 = αi for i = 1, . . . , k.

Let us write X = TT ∗ for an n × n matrix T and let Bi = TAiT
∗. Then the Bi

are positive semidefinite matrices and

αi = 〈Ai, X〉 = tr(AiX) = tr(AiTT
∗) = tr(TAiT

∗) = tr(Bi) = 〈Bi, I〉,

so I satisfies the system 〈Bi, I〉 = αi for i = 1, . . . , k.

Moreover, if Y0 � 0 satisfies the inequalities

(1− ε)αi ≤ 〈Bi, Y0〉 ≤ (1 + ε)αi for i = 1, . . . , k,

then for X0 = T ∗Y0T we have

〈Ai, X0〉 = tr(AiT
∗Y0T ) = tr(TAiT

∗Y0) = tr(BiY0) = 〈Bi, Y0〉
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and hence

(1− ε)αi ≤ 〈Ai, X0〉 ≤ (1 + ε)αi for i = 1, . . . , k.

In addition, X0 � 0 and rankX0 ≤ rankY0.

Thus we assume that X = I and so

αi = 〈Ai, I〉 = tr(Ai) for i = 1, . . . , k.

Let d = mn and let us consider the direct sum of m copies of Rn:

R
d = R

n ⊕ . . .⊕ R
n

︸ ︷︷ ︸
m times

.

Thus a vector x ∈ R
d is identified with an m-tuple, x = (x1, . . . , xm), where

xj ∈ R
n for j = 1, . . . ,m.

For i = 1, . . . , k, we define a quadratic form qi : R
d −→ R by

(6.1.1) qi(x1, . . . , xm) =
1

m

m∑
j=1

〈Aixj , xj〉 =
1

m

m∑
j=1

〈Ai, xj ⊗ xj〉,

where x1, . . . , xm ∈ R
n. Thus the matrix Qi of qi consists of m diagonal blocks

1
mAi:

Qi =

⎛
⎜⎜⎝

1
mAi 0 0 . . . 0

0 1
mAi 0 . . . 0

. . . . . . . . . . . . . . .
0 0 . . . 0 1

mAi

⎞
⎟⎟⎠ .

Let us consider the standard Gaussian measure γd in R
d. We apply Proposition

5.6 to the forms qi. We have

tr(Qi) = tr(Ai) = αi, ‖Qi‖ =
‖Ai‖√

m
≤ tr(Ai)√

m
=

αi√
m

and μ ≤ ‖Qi‖√
m

for every eigenvalue μ of Qi; cf. Problems 2–3 of Section 5.6.

Let us choose τ = ε
√
m in Proposition 5.6. Then

γd

{
x ∈ R

d : |qi(x)− αi| > εαi

}
≤ 2 exp

{
−ε2m/8

}
≤ 1

2k
for i = 1, . . . , k.

Therefore,

γd

{
x ∈ R

d : |qi(x)− αi| ≤ εαi for i = 1, . . . , k
}
≥ 1− k · 1

2k
=

1

2
.

In particular, there exists x = (x1, . . . , xm) ∈ R
d such that |qi(x) − αi| ≤ εαi for

i = 1, . . . , k. Let

X0 =
1

m

m∑
j=1

xj ⊗ xj .
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Then, by (6.1.1),

∣∣〈Ai, X0〉 − αi

∣∣ ≤ εαi for i = 1, . . . , k

and the result follows. �

The proof of Proposition 6.1 suggests a simple recipe to construct the desired

matrix X0. First, we find a matrix T such that X = TT ∗. Then we sample m
vectors y1, . . . , ym at random from the standard Gaussian distribution in R

n and

we let Y0 = 1
m

∑m
i=1 yi ⊗ ym. Finally, we let X0 = T ∗Y0T . With probability at

least 1/2, the matrix X0 satisfies the constraints of Proposition 6.1.

PROBLEMS.

1. Let A1, . . . , Ak be symmetric matrices and let α1, . . . , αk be numbers. Sup-

pose that the eigenvalues of every matrix Ai do not exceed 1 in absolute value.

Suppose further that there is a matrix X � 0 such that

〈Ai, X〉 = αi for i = 1, . . . , k

and tr(X) = 1. Let ε > 0 and let m be a positive integer such that

m ≥ 32ε−2 ln(4k + 4).

Prove that there exists a matrix X0 � 0 such that

αi − ε ≤ 〈Ai, X0〉 ≤ αi + ε for i = 1, . . . , k

and

rankX0 ≤ m.

2. Let Sn−1 =
{
x ∈ R

n : ‖x‖ = 1
}
be the unit sphere and let qi : S

n−1 −→ R

be quadratic forms such that |qi(x)| ≤ 1 for all x ∈ S
n−1 and i = 1, . . . , k. Consider

the map φ : Sn−1 −→ R
k, φ(x) =

(
q1(x), . . . , qk(x)

)
. Let ε > 0 and let m be a

positive integer such that m ≥ 32ε−2 ln(4k + 4).

Prove that for any point a = (α1, . . . , αk) ∈ conv
(
φ
(
S
n−1
))

there exists a

point b = (β1, . . . , βk) such that

|αi − βi| ≤ ε for i = 1, . . . , k

and b is a convex combination of m points of φ
(
S
n−1
)
.

3. Prove the following version of Proposition 6.1:

For every δ > 0 there exists ε0 > 0 such that for any positive semidefinite

matrices A1, . . . , Ak, for any non-negative numbers α1, . . . , αk, for any positive

ε < ε0 and for any positive integer

m ≥ 4 + δ

ε2
ln(2k)
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there exists a matrix X0 � 0 such that

αi(1− ε) ≤ 〈Ai, X0〉 ≤ αi(1 + ε) for i = 1, . . . , k

and

rankX0 ≤ m

provided there exists a matrix X � 0 such that

〈Ai, X0〉 = αi for i = 1, . . . , k.

Hint: Use Problem 4 of Section 5.6.

4∗ (A. Frieze and R. Kannan). Let A = (aij) be an m × n matrix such that

|aij | ≤ 1 for all i, j. Prove that for any ε ∈ (0, 1) there exists an m × n matrix

D such that rankD = O(1/ε2) and the sum of the elements in every submatrix of

A−D (among 2m+n submatrices) does not exceed εmn in absolute value.

Remark: See [FK99].

As in Chapter II, we apply our results to the graph realization problem; cf.

Section II.15.

(6.2) Realization with a distortion. Suppose we are given a weighted graph

G = (V,E; ρ), where V =
{
v1, . . . , vn

}
is the set of vertices, E is the set of edges

and ρ : E −→ R+ is a function, which assigns to every edge (i, j) ∈ E a non-

negative number (“length”) ρij . Recall that G is realizable if one can place the

vertices v1, . . . , vn in R
d for some d in such a way that

‖vi − vj‖ = ρij for every edge {i, j} ∈ E.

Suppose that we are willing to permit a certain distortion. We obtain the following

result.

(6.3) Corollary. Suppose that a graph G with k edges is realizable. Then, for any
0 < ε < 1 and any m ≥ 8ε−2 ln(4k), one can place the vertices v1, . . . , vn in R

m so
that

(1− ε)ρ2ij ≤ ‖vi − vj‖2 ≤ (1 + ε)ρ2ij for every edge {i, j} ∈ E.

Proof. As in the proof of Proposition II.15.4, we reduce the problem to a system

of linear equations in positive semidefinite matrices.

For (i, j) ∈ E, let Aij be the n×n matrix such that 〈Aij , X〉 = xii− 2xij +xjj

for any n× n matrix X. Since G is realizable, there exists X � 0 such that

〈Aij , X〉 = ρ2ij for all (i, j) ∈ E

(we choose X to be the Gram matrix of the vectors v1, . . . , vn in a realization of

G). Now we note that Aij � 0 and apply Proposition 6.1. �

Corollary 6.3 with different constants and a slightly different method of proof

is due to W.B. Johnson and J. Lindenstrauss [JL84]; see also Problem 2 of Section

7.1.
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PROBLEM.

1. Prove the following version of Corollary 6.3:

For every δ > 0 there exists ε0 > 0 such that for every positive ε < ε0, for every
k and every positive integer m ≥ (1 + δ)ε−2 ln(2k), if a graph G = (V,E; ρ) with k
edges is realizable, one can place the vertices v1, . . . , vn of G in R

m in such a way

that

(1− ε)ρij ≤ ‖vi − vj‖ ≤ (1 + ε)ρij for every edge {i, j} ∈ E.

Hint: Use Problem 3 of Section 6.1.

7. The Measure and Metric on the Unit Sphere

Let Sn−1 ⊂ R
n be the unit sphere:

S
n−1 =

{
x ∈ R

n : ‖x‖ = 1
}
.

Let νn−1 be the Haar probability measure on S
n−1. That is, νn−1 is the unique mea-

sure defined on Borel sets A ⊂ S
n−1 such that νn−1

(
S
n−1
)
= 1 and νn−1

(
U(A)
)
=

νn−1(A) for every orthogonal transformation U and every Borel set A ⊂ S
n−1.

Since the standard Gaussian measure γn is also rotation invariant, there is a simple

relationship between νn−1 and γn: for A ⊂ S
n−1, let

A =
{
λx ∈ R

n : x ∈ A and λ ≥ 0
}
.

Then

νn−1(A) = γn(A);

see Figure 68.

A
A

0

Figure 68. A set A ⊂ S
n−1 and the corresponding set A ⊂ R

n

The following estimate will be used in Section VI.8 (the bound is far from the

best possible but works fine for our purposes).

(7.1) Lemma. Let us choose y ∈ S
n−1 and ε > 0. Then

νn−1

{
x ∈ S

n−1 : 〈x, y〉 ≥ ε
}
≤ 2 exp

{
−ε2n/16

}
.
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Proof. Without loss of generality we may assume that y = (1, 0, . . . , 0). Hence

our goal is to estimate νn−1(A), where

A =
{
(ξ1, . . . , ξn) ∈ S

n−1 : ξ1 ≥ ε
}
.

We have νn−1(A) = γn(A), where

A =
{
x = (ξ1, . . . , ξn) ∈ R

n : ξ1 ≥ ε‖x‖
}
.

Let

B =
{
(ξ1, . . . , ξn) ∈ R

n :

n∑
i=1

ξ2i ≥ (1− ε)n and ξ21 ≤ ε2(1− ε)n
}
.

By Corollary 5.5 and Lemma 5.2,

γn(B) ≥ 1− exp
{
−ε2n/4

}
− exp
{
−ε2(1− ε)n/2

}
.

Thus

γn(B) ≥ 1− 2 exp
{
−ε2n/4

}
provided ε ≤ 1

2
.

Then A ⊂ R
n \B and hence

γn(A) ≤ 1− γn(B) ≤ 2 exp
{
−ε2n/4

}
provided ε ≤ 1

2
.

We observe that νn−1(A) decreases as ε grows and that A is empty for ε > 1. Hence

νn−1(A) ≤ 2 exp
{
−n/16

}
for ε ≥ 1

2

and, in any case,

νn−1(A) ≤ 2 exp
{
−ε2n/16

}
.

�

Lemma 7.1 implies that if the dimension n is large, then with high probability,

for any two randomly chosen vectors x, y ∈ S
n−1, we have |〈x, y〉| = O(n−1/2),

so x and y are “almost orthogonal”. This is an example of a concentration prop-
erty for the uniform probability measure on the unit sphere. Some other related

concentration properties are discussed in problems below.

PROBLEMS.

1. Let L ⊂ R
n be a subspace and let k = dimL. For x ∈ S

n−1, let xL denote

the orthogonal projection of x onto L. Prove that for any 0 < ε < 1

νn−1

{
x ∈ S

n−1 : (1− ε)

√
k

n
≤ ‖xL‖ ≤ (1− ε)−1

√
k

n

}
≥ 1− 4 exp

{
−ε2k/4

}
.

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



246 V. Convex Bodies and Ellipsoids

Thus if k is large, then the length of the projection xL for “almost any” vector

x ∈ S
n−1 is close to

√
k/n.

2. Instead of fixing a subspace L ⊂ R
n, we can fix a vector x ∈ S

n−1 and

choose a random k-dimensional subspace L. More precisely, let Gk(R
n) be the

Grassmannian of all k-dimensional subspaces L ⊂ R
n and let νn,k be the rotation

invariant probability measure on Gk(R
n); cf. Section I.8.3. Let us fix x ∈ S

n−1.

Prove that for any 0 < ε < 1

νn,k

{
L ∈ Gk(R

n) : (1− ε)

√
k

n
≤ ‖xL‖ ≤ (1− ε)−1

√
k

n

}
≥ 1− 4 exp

{
−ε2k/4

}
.

Hence if k is large, then the length of the projection xL for “almost any” k-
dimensional subspace L ⊂ R

n is close to
√

k/n.

Remark: The original proof of Corollary 6.3 in [JL84] uses the following con-

struction. Let us choose a realization v1, . . . , vn ∈ R
n of G and let L ⊂ R

n be

a randomly chosen m-dimensional subspace. Let ui be the orthogonal projection

of vi onto L for i = 1, . . . ,m. Then, with high probability, the points (
√
n/k)ui

provide the desired m-realization of G.

3. Let φn : Sn−1 −→ R,

φn(ξ1, . . . , ξn) = ξ1
√
n,

be a map. Prove that

γ(A) = lim
n−→+∞

νn−1

(
φ−1
n (A)

)

for any Borel set A ⊂ R. Hence the standard Gaussian measure can be obtained as

a limit of the appropriately scaled projection of the uniform measure νn−1 on the

sphere.

4∗. Let us make S
n−1 a metric space by letting dist(x, y) = arccos〈x, y〉 for all

x, y ∈ S
n−1. Thus 0 ≤ dist(x, y) ≤ π is the angle between x and y. For a closed set

A ⊂ S
n−1 and ρ > 0, let

Aρ =
{
x ∈ S

n−1 : dist(x, y) ≤ ρ for some y ∈ A
}

be the ρ-neighborhood of A. The ρ-neighborhood of a point y ∈ S
n−1 is called the

spherical cap of radius ρ centered at y and denoted C(y, ρ). Let A ⊂ S
n−1 be a

closed set and let C(y, ρ) be a spherical cap such that

νn−1(A) = νn−1

(
C(y, ρ)

)
.

Prove the isoperimetric inequality for the unit sphere: for any ε > 0

νn−1(Aε) ≥ νn−1

(
C(y, ρ+ ε)

)
.

Remark: See [FLM77].
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5. Deduce the isoperimetric inequality for the Gaussian measure (cf. Problem

4 of Section 5.3) from the isoperimetric inequality for the unit sphere and Problem

3 above.

6. Let A ⊂ S
d−1 be a closed set such that νn−1(A) = 1/2. Deduce from

Problem 4 above and Lemma 7.1 a concentration inequality for the unit sphere:

νn−1(Aε) ≥ 1− 2 exp
{
−cε2n

}

for some absolute constant c > 0 and all ε > 0.

7. Let f : Sn−1 −→ R be a function such that

|f(x)− f(y)| ≤ dist(x, y) for all x, y ∈ S
n−1;

cf. Problem 4 above. Let α be the median of f , that is, α is a number such that

νn−1

{
x ∈ S

n−1 : f(x) ≤ α
}
≥ 1

2
and νn−1

{
x ∈ S

n−1 : f(x) ≥ α
}
≥ 1

2
;

cf. Problem 2 of Section 5.5. Deduce from Problem 6 above a concentration in-
equality for Lipschitz functions:

νn−1

{
x ∈ S

n−1 : |f(x)− α| ≤ ε
}
≥ 1− 4 exp{−cε2n

}

for some absolute constant c > 0 and all ε > 0.

Concentration inequalities are used to prove the existence of “almost ellip-

soidal” sections and projections of convex bodies. Those results are beyond the

scope of this book (see [MiS86] and [P94]), but we state some of them as prob-

lems.

8∗ (Dvoretzky’s Theorem). Prove that for any ε > 0 and for any positive

integer k there exists a positive integer m = m(k, ε) (one can choose m about

exp
{
O(ε−2k)

}
) such that for any n ≥ m and for any convex body K ⊂ R

n sym-

metric about the origin there exists a k-dimensional subspace L ⊂ R
n and an

ellipsoid E ⊂ L centered at the origin such that

(1− ε)E ⊂ K ∩ L ⊂ (1 + ε)E.

Remark: The two main ingredients of the proof from [FLM77] are the results

of Problem 7 above and Problem 5 of Section 3.2.

9. Here is the dual form of Dvoretzky’s Theorem: For any ε > 0 and for any

positive integer k there exists a positive integer m = m(k, ε) (one can choose m
about exp

{
O(ε−2k)

}
) such that for any n ≥ m and for any convex body K ⊂ R

n

symmetric about the origin there exists a k-dimensional subspace L ⊂ R
n and an

ellipsoid E ⊂ L centered at the origin such that

(1− ε)E ⊂ KL ⊂ (1 + ε)E,
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where KL is the orthogonal projection of K onto L. Deduce the equivalence of the

statements of Problems 8 and 9.

10∗ (Milman’s QS Theorem). Prove that for any 0 < ε < 1 there exists α =

α(ε) > 0 such that for any convex body K ⊂ R
n symmetric about the origin there

exist subspaces L2 ⊂ L1 ⊂ R
n with dimL2 ≥ (1− ε)n and an ellipsoid E ⊂ L2 such

that

E ⊂ (K ∩ L1)L2
⊂ αE,

where (K ∩ L1)L2
is the orthogonal projection of the section K ∩ L1 onto L2.

Remark: “QS” stands for “quotient of subspace”. In the dual (equivalent) form

of the theorem we take the projection first and then the intersection.

11∗ (The “Volume Ratio” Theorem). Let K ⊂ R
n be a convex body symmetric

about the origin and let E ⊂ K be the maximum volume ellipsoid; see Section 2.

Let

α =
(volK
volE

)1/n
.

Prove that for k = 1, . . . , n − 1 there exists a subspace L ⊂ R
n with dimL = k

such that

K ∩ L ⊂ (4πα)
n

n−kE.

8. Remarks

For an accessible introduction to metric convex geometry including approximating

ellipsoids and Dvoretzky’s Theorem, see [B97]. For more advanced texts, see [P94]

and [MiS86]. We did not discuss other interesting and important ellipsoids, such as

Milman’s ellipsoid and the inertia ellipsoid, associated with a (symmetric) convex

body; see [P94], [B97]. The volume inequalities and the Brunn-Minkowski Theory

are discussed in detail in [Sc93]. First counterexamples to the Borsuk conjecture

(see the remark after Problem 7 of Section 2.4) were constructed by J. Kahn and

G. Kalai; see [K95]. Results of Problems 8 and 9 of Section 2.4 regarding the

metric structure of the set of non-negative polynomials are due to [Bl02]. For the

Ellipsoid Method, see [Lo86], [GLS93] and [PS98]. A comprehensive reference

for the measure concentration techniques is [Le01]. For Gaussian measures, see

[Bo98].
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Chapter VI

Faces of Polytopes

We explore the combinatorial structure of polytopes. We discuss the number of

faces of a given dimension that a polytope can have, how the faces fit together

and what is the facial structure of some particularly interesting polytopes, such

as the permutation polytope and the cyclic polytope. Our approach is based on

considering a sufficiently generic linear function on a polytope and using some

combinatorial (counting) or metric arguments.

1. Polytopes and Polarity

Recall (Definition I.2.2) that a polytope is the convex hull of a finite set of points

in R
d. We proved that a polytope is a polyhedron (Corollary IV.1.3) and that a

bounded polyhedron is a polytope (Corollary II.4.3). Recall that an extreme point

of a polyhedron (polytope) is called a vertex (cf. Definition II.4.1). In this section,

we apply polarity (see Chapter IV) to obtain some general results about the facial

structure of polytopes.

To warm up, we prove that a face of a polytope is the convex hull of the vertices

of the polytope that belong to the face.

(1.1) Lemma. Let P = conv
(
v1, . . . , vm

)
⊂ R

d be a polytope and let F ⊂ P be a

face. Then F = conv
(
vi : vi ∈ F

)
. In particular, a face of a polytope is a polytope

and the number of faces of a polytope is finite.

Proof. Since F is a face of P , there exists a linear functional f : Rd −→ R and a

number α such that f(x) ≤ α for all x ∈ P , and f(x) = α if and only if x ∈ F (see

Definition II.2.6). Let I = {i : f(vi) = α
}
, so f(vi) < α for all i /∈ I. Obviously,

conv(vi : i ∈ I) ⊂ F . It remains to show that F ⊂ conv(vi : i ∈ I). Let us choose

an x ∈ F . Since x ∈ P , we have

x =

m∑
i=1

λivi, where λi ≥ 0 for i = 1, . . . ,m and

m∑
i=1

λi = 1.

249
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If λi > 0 for some i /∈ I, then f(λivi) = λif(vi) < λiα and

f(x) =

m∑
i=1

λif(vi) < α

m∑
i=1

λi = α,

which is a contradiction. Hence λi = 0 for i /∈ I and x ∈ conv(vi : i ∈ I). �

As an immediate corollary, we conclude that the faces of a polytope fit together

nicer than in the case of a general convex body; cf. Problem 6, Section II.2.6.

(1.2) Corollary. Let P be a polytope, let F be a face of P and let G be a face of
F . Then G is a face of P .

Proof. Suppose that

P = conv
(
v1, . . . , vm

)
, F = conv

(
vi : i ∈ I

)
and G = conv

(
vj : j ∈ J ⊂ I).

There exists a linear functional f : Rd −→ R and a number α such that f(vi) = α
for all i ∈ I and f(vi) < α for all i /∈ I, and there exists a linear functional

g : Rd −→ R and a number β such that g(vi) = β for i ∈ J and g(vi) < β for

i ∈ I \ J . Then, for a sufficiently small ε > 0, the functional h = f + εg has the

following property: h(vi) = α + εβ for i ∈ J and h(vi) < α + εβ for i /∈ J . Hence

G is a face of P . �

PROBLEMS.

1◦. Prove that a vertex of a polytope is a 0-dimensional face of the polytope.

2◦. Prove that a face of a polyhedron is a polyhedron.

3. Let P =
{
x ∈ R

d : 〈ci, x〉 ≤ βi for i = 1, . . . ,m
}
be a polyhedron and let

u ∈ P be a point. Let Iu = {i : 〈ci, u〉 = βi

}
. Let F =

{
x ∈ P : 〈ci, x〉 = βi for

i ∈ Iu
}
. Prove that F is the smallest face of P containing u (we agree here that P

is a face of itself).

4. Prove that a polyhedron has finitely many faces.

5. Let P ⊂ R
d be a polyhedron, let F ⊂ P be a face of P and let G ⊂ F be a

face of F . Prove that G is a face of P .

6◦. Prove that the intersection of two polytopes is a polytope.

Now we present the main result of this section, which establishes an inclusion

reversing correspondence between the faces of a polytope and the faces of its polar.

It will serve us as a “translation device”, which, in the general spirit of duality,

allows us to obtain some results “for free”.

(1.3) Theorem. Let P ⊂ R
d be a polytope, containing the origin in its interior

and let Q = P ◦. Then Q is a polytope. For a face F of P , let

F̂ =
{
x ∈ Q : 〈x, y〉 = 1 for each y ∈ F

}
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(we agree that ∅̂ = Q and that P̂ = ∅). Then

1. the set F̂ is a face of Q and

dimF + dim F̂ = d− 1;

2. if F ⊂ G are faces of P , then Ĝ ⊂ F̂ ;
3. let G be a face of Q and let

F =
{
y ∈ P : 〈x, y〉 = 1 for each x ∈ G

}

(we agree that F = P for G = ∅ and that F = ∅ for G = Q). Then

F̂ = G.

Proof. The proof that Q is a polytope is incorporated in the proof of Corollary

IV.1.3. Suppose that P = conv
(
v1, . . . , vm

)
. By Lemma 1.1, F = conv

(
vi : i ∈ I

)

for some set of indices I. Let v =
1

|I|
∑
i∈I

vi, where |I| is the cardinality of I. Hence

v ∈ F . We claim that

(1.3.1) F̂ =
{
x ∈ Q : 〈x, v〉 = 1

}
.

Indeed, v ∈ F , so 〈x, v〉 = 1 for any x ∈ F̂ . On the other hand, for any x ∈ Q and

any vi, we have 〈x, vi〉 ≤ 1. Therefore, if x ∈ Q and 〈x, v〉 = 1, then 〈x, vi〉 = 1 for

i ∈ I and hence x ∈ F̂ . By (1.3.1), we conclude that F̂ is a face of Q.

Let us prove that dimF + dim F̂ = d − 1. Since F is a face, there is a vector

c ∈ R
d and a number α, such that

〈c, vi〉 = α for i ∈ I and 〈c, vi〉 < α for i /∈ I.

Since 0 ∈ intP , α > 0. Scaling, if necessary, we can assume that α = 1. Then

c ∈ F̂ . Suppose that dimF = k. For any x ∈ F̂ , we must have 〈x, vi〉 = 1 for i ∈ I,
or, in other words, 〈x− c, vi〉 = 0 for i ∈ I. Since dim span(F ) = k+1, we get that

dim F̂ ≤ d−k−1. On the other hand, if y ∈ R
d is a vector such that 〈y, vi〉 = 0 for

i ∈ I, then x = c+ εy ∈ F̂ for a sufficiently small ε > 0. Hence dim F̂ = d− k − 1.

Part 1 is proved.

Let us prove Part 2 of the theorem. For any x ∈ Ĝ, we have 〈x, y〉 = 1 for any

y ∈ G. Since F ⊂ G, we have 〈x, y〉 = 1 for any y ∈ F . Therefore, x ∈ F̂ and the

proof of Part 2 follows.

By Theorem IV.1.2, Q◦ = P . Then, by Part 1, F is a face of P and it is clear

that G ⊂ F̂ . Let c ∈ R
d be a vector such that 〈c, x〉 = 1 for all x ∈ G and 〈c, x〉 < 1

for x /∈ Q \G (see the proof of Part 2 above). Then c ∈ F . Therefore, for all x ∈ F̂

we have 〈x, c〉 = 1, so x ∈ G. Therefore, F̂ ⊂ G. Hence G = F̂ and the proof of

Part 3 follows. �
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252 VI. Faces of Polytopes

Figure 69 presents an example of the polarity correspondence between faces of

the cube and octahedron in R
3. It should be noted that the figure reflects only

some general combinatorial features of the correspondence since each polytope is

pictured in its own copy of the ambient space R
3.

F

F

G 
G 

H

H

^

^

^

Figure 69. The polarity correspondence between faces

Faces of certain dimensions have special names.

(1.4) Definitions. A 0-dimensional face of a polytope is called a vertex. A 1-

dimensional face of a polytope is called an edge. A (d− 1)-dimensional face of a d-
dimensional polytope is called a facet. A (d−2)-dimensional face of a d-dimensional

polytope is called a ridge. Vertices v and u of a polytope are called neighbors if the
interval [u, v] is an edge of the polytope.

PROBLEMS.

1. Prove that every d-dimensional polytope has a facet. Deduce that a

d-dimensional polytope has a k-dimensional face for each 0 ≤ k ≤ d− 1.

2. Let P ⊂ R
d be a d-dimensional polytope. Prove that every ridge of P

belongs to precisely two facets.

Hint: What is the dual statement?

3. Prove the following diamond property. Let P be a polytope and G ⊂ F be

two faces of P such that dimF − dimG = 2. Then there are precisely two faces

H1, H2, such that G ⊂ H1, H2 ⊂ F (all inclusions are proper).

4. Let P ⊂ R
d be a d-dimensional polytope containing the origin in its interior,

let F ⊂ P be a k-dimensional face of P and let F̂ ⊂ P ◦ be the face from Theorem

1.3. Hence F is a (d − k − 1)-dimensional polytope. We consider F as a full-

dimensional polytope in its affine hull and choose the origin to be in its interior.
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Let R = F ◦. Hence R is a (d−k−1)-dimensional polytope. Establish an inclusion-

preserving bijection φ between the faces of R and the faces H of P containing F .

The (facial structure of) the polytope R is called the face figure of F in P and

denoted P/F .

F

P / F

G

/GPP

Figure 70. A polytope P and its face figures

Remark: The picture of the face figure P/F can be obtained by intersecting P
with an appropriate affine subspace of dimension dimP − dimF − 1.

5. Let K ⊂ R
d be a compact convex set containing the origin in its interior.

Let Q0 = K◦, let p ∈ intQ0 be a point and let Qp be the polar of K with the origin

moved to p:

Qp =
{
x ∈ R

d : 〈x− p, y − p〉 ≤ 1 for all y ∈ K
}
.

Prove that Qp is the image of Q0 under the projective transformation:

x �−→ p+
x

1− 〈x, p〉 .

We will need the following useful result, which can be considered as a sharpening

of Corollary IV.1.3.

(1.5) Lemma. Let P ⊂ R
d be a d-dimensional polytope. Then P can be repre-

sented in the form

P =
{
x ∈ R

d : fi(x) ≤ αi for i = 1, . . . ,m
}
,

where fi : R
d −→ R are linear functionals, αi ∈ R are numbers and the sets

Fi =
{
x ∈ P : fi(x) = αi

}

are the facets of P for i = 1, . . . ,m.
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Proof. The proof follows the proof of Corollary IV.1.3 with some modifications.

Let us choose the origin in the interior of P and let Q = P ◦ be the polar of P . We

can write Q = conv(vi : i = 1, . . . ,m), where vi are the vertices of Q. Then

P =
{
x : 〈vi, x〉 ≤ 1 for i = 1, . . . ,m

}
.

Let us choose fi(x) = 〈vi, x〉 and αi = 1. By Theorem 1.3, Fi = v̂i are the facets of

P . �

2. The Facial Structure of the Permutation Polytope

In this section, we describe the facial structure of a particular polytope. Recall (see

Definition II.6.1) that the permutation polytope P (a), where a = (α1, . . . , αn),

a ∈ R
n, is the convex hull of the points σ(a) obtained from a by permutations of

the coordinates. In this section, we describe the facial structure of P (a) assuming

that the coordinates α1, . . . , αn are distinct. We need a simple and useful result.

(2.1) Lemma. Let x = (ξ1, . . . , ξn) and y = (η1, . . . , ηn) be n-vectors. Suppose
that ξi > ξj and ηi < ηj for some pair of indices i �= j. Let y be the vector obtained
from y by swapping ηi and ηj. Then

〈x, y〉 > 〈x, y〉.

Proof. We have

〈x, y〉 − 〈x, y〉 = ξiηj + ξjηi − ξiηi − ξjηj = (ξi − ξj)(ηj − ηi) > 0.

�

PROBLEM.

The intuitive meaning of Lemma 2.1 is conveyed by the problem below.

1◦. Suppose that there are six boxes in front of you. The first is stuffed with

$100 bills, the second with $50 bills, the third with $20 bills, the fourth with $10

bills, the fifth with $5 bills and the sixth with $1 bills. You are allowed to take

from each box a number of bills with the only condition that the (unordered) set

of the numbers of bills taken is the (unordered) set {3, 5, 10, 2, 15, 8} (that is, you

should take three bills from some box, then five bills from some other box and

so forth). How many bills should you take from each box to maximize the total

amount taken?

Surprising as it may seem, the reasoning behind Problem 1 of Section 2.1 is

powerful enough to lead to the complete description of the facial structure of the

permutation polytope P (a); cf. Figure 16.
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2. The Facial Structure of the Permutation Polytope 255

(2.2) Proposition. Let a = (α1, . . . , αn) be a point such that α1 > α2 > . . . > αn

and let P = P (a) be the corresponding permutation polytope. For a number 1 ≤
k ≤ n, let S be a partition of the set {1, . . . , n} into k pairwise disjoint non-empty
subsets S1, . . . , Sk. Let si = |Si| be the cardinality of the i-th subset for i = 1, . . . , k,

let ti =
∑i

j=1 sj for i = 1, . . . , k and let us define sets A1 = {αj : 1 ≤ j ≤ s1
}
and

Ai = {αj : ti−1 ≤ j ≤ ti} for i = 2, . . . , k.

Let FS be the convex hull of the points b = σ(a), b = (β1, . . . , βn) such that
{βj : j ∈ Si} = Ai for all i = 1, . . . , k. In words: we permute the first s1 numbers
α1, . . . , αs1 in the coordinate positions prescribed by S1 ⊂ {1, . . . , n}, the second s2
numbers αs1+1, . . . , αs1+s2 in the coordinate positions prescribed by S2 ⊂ {1, . . . , n}
and so forth, and take the convex hull FS of all resulting points.

Then FS is a face of P , dimFS = n − k and for every face F of P we have
F = FS for some partition S.

Example. Let n = 10, a = (20, 16, 15, 10, 9, 7, 5, 4, 2, 1), S1 = {4, 5, 6, 7}, S2 =

{1, 2, 3} and S3 = {8, 9, 10}. Hence A1 = {20, 16, 15, 10}, A2 = {9, 7, 5} and

A3 = {4, 2, 1}. The face FS is the convex hull of all points b = σ(a) of the type

(
• • •︸ ︷︷ ︸

permutation of 9,7,5

• • • •︸ ︷︷ ︸
permutation of 20,16,15,10

• • •︸ ︷︷ ︸
permutation of 4,2,1

)

and dimFS = 7.

Proof of Proposition 2.2. Let us describe all the faces F of P containing a.

Let c = (γ1, . . . , γn) be a vector and λ be a number such that 〈c, x〉 ≤ λ for

all x ∈ P and 〈c, x〉 = λ if and only if x ∈ F . Since a ∈ F , we have 〈c, a〉 = λ.
Lemma 2.1 implies that we must have γ1 ≥ γ2 ≥ . . . ≥ γn, since if for some i < j
we had γi < γj , we would have obtained 〈c, τ (a)〉 > 〈c, a〉 for the transposition τ
that swaps αi and αj .

Let us split the sequence γ1 ≥ γ2 ≥ . . . ≥ γn into the subintervals S1, . . . , Sk

for which the γ’s do not change:

γ1 = . . . = γt1︸ ︷︷ ︸
S1={1,... ,t1}

> γt1+1 = . . . = γt2︸ ︷︷ ︸
S2={t1+1,... ,t2}

> γt2+1 = . . . > γtk−1+1 = . . . = γn︸ ︷︷ ︸
Sk={tk−1+1,... ,n}

.

Hence S1 = {j : γj = γ1}, s1 = t1 = |S1| and Si = {j : γj = γti−1+1}, si = |Si| and
ti = ti−1 + si for i = 2, . . . , k.

We observe that for b = σ(a), b = (β1, . . . , βn), we have 〈b, c〉 = 〈a, c〉 if

and only if (β1, . . . , βt1) is a permutation of (α1, . . . , αt1), (βt1+1, . . . , βt2) is a

permutation of (αt1+1, . . . , αt2), and so forth, so that (βtk−1+1, . . . , βn) is a per-

mutation of (αtk−1+1, . . . , αn). Applying Lemma 1.1, we conclude that F = FS
for the partition S = {S1, . . . , Sk}. In this case, we have A1 = {α1, . . . , αs1} and

Ai = {αti−1+1, . . . , αti} for i = 2, . . . , k.

Vice versa, every vector c = (γ1, . . . , γn) with γ1 ≥ γ2 ≥ . . . ≥ γn gives rise to

a face FS containing a, where S = S1 ∪ S2 ∪ . . . ∪ Sk is the partition of {1, . . . , n}
into the subintervals on which γ’s do not change.

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.
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Let a1 = (α1, . . . , αs1) ∈ R
s1 and let ai = (αti−1+1, . . . , αti) ∈ R

si for

i = 2, . . . , k. Geometrically, the face FS is the direct product

FS = P (a1)× . . .× P (ak)

of the permutation polytopes P (ai) ⊂ R
si . Since a has distinct coordinates, the

coordinates of each ai are distinct as well, so by Problem 4, Section II.6.1, we have

dimP (ai) = si − 1 for i = 1, . . . , k. Therefore,

dimFS =

k∑
i=1

dimP (ai) =

k∑
i=1

(si − 1) =

( k∑
i=1

si

)
− k = n− k.

Hence we have described the faces F of P containing a. Let σ ∈ Sn be a permutation

and let σ(x) = y for x = (ξ1, . . . , ξn) and y = (η1, . . . , ηn) provided ηi = ξσ−1(i).

Then the action x �−→ σ(x) is an orthogonal transformation of R
n. Hence we

conclude that F is a face of P if and only if for some permutation σ, the set σ(F )

is a face of P containing a. If σ(F ) = FS for S = S1 ∪ . . . ∪ Sk, then F = FS′ ,

where S ′ = σ−1(S1) ∪ . . . ∪ σ−1(Sk). This completes the proof. �

PROBLEMS.

1◦. Let a = (α1, . . . , αn) be a vector such that α1 > α2 > . . . > αn and let

P (a) be the corresponding permutation polytope. Let b = (β1, . . . , βn) be a vertex

of P . Let b′ be another vertex of P . Prove that the interval [b, b′] is an edge of

P if and only if b′ is obtained from b by swapping two values βi and βj such that

βi = αk and βj = αk+1 for some k = 1, . . . , n− 1.

2◦. Prove that the facets of the permutation polytope can be described as

follows. Let us choose a partition S of the set {1, . . . , n} into two non-empty

disjoint subsets S1 and S2. Let s1 = |S1| be the cardinality of S1 and let s2 =

|S2| be the cardinality of S2, so that s1 + s2 = n. Let FS be the convex hull

of all points b obtained by permuting the numbers α1, . . . , αs1 in the coordinate

positions prescribed by S1 ⊂ {1, . . . , n} and permuting independently the numbers

αs1+1, . . . , αn in the coordinate positions prescribed by S2 ⊂ {1, . . . , n}. Prove

that FS is a facet of P (a) and that every facet of P (a) has the form FS for some

partition S = S1 ∪ S2.

3. Let a ∈ R
n be a vector with distinct components and let P (a) be the

corresponding permutation polytope. Let fk be the number of k-dimensional faces

of P . Prove that

fk =
∑

m1+...+mn−k=n
m1,... ,mn−k are positive integers

n!

m1! · · ·mn−k!
.

4∗. Let us choose a = (n−1, n−2, . . . , 1, 0), a ∈ R
n. The polytope Pn−1 = P (a)

is called the permutohedron. Prove that the permutohedron is a zonotope, that is,
the Minkowski sum of finitely many (namely,

(
n
2

)
) straight line intervals.

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



2. The Facial Structure of the Permutation Polytope 257

Hint: Let e1, . . . , en be the standard basis of Rn. For i < j let

Iij = conv
(1
2
ei −

1

2
ej ,

1

2
ej −

1

2
ei

)
.

Then

Pn−1 =
n− 1

2

(
1, . . . , 1) +

∑
i<j

Iij ,

where “
∑

” stands for the Minkowski sum; see Example 7.15 of [Z95].

5. Let a ∈ R
n be a vector with distinct components and let P (a) be the

corresponding permutation polytope. Let us consider P (a) as a full-dimensional

polytope in its affine hull and let us choose the origin in the interior of P (a).
Describe the combinatorial structure of the polar Q to P (a).

Hint: Combinatorially, Q is the first barycentric subdivision of the simplex.

Namely, we start with the standard (d− 1)-dimensional simplex Δ (see Problem 1

of Section I.2.2) considered as a convex body in its affine hull, choose a point pF in

the interior of every face F of Δ and slightly push pF “outward” by the distance

εd−dimF for a sufficiently small ε > 0.

As a corollary of Proposition 2.2, we obtain a theorem of R. Rado (1952),

which gives us a useful criterion for checking whether a given point belongs to a

given permutation polytope.

(2.3) Rado’s Theorem. Let a = (α1, . . . , αn) be a point, where α1 ≥ α2 ≥ . . . ≥
αn and let P (a) ⊂ R

n be the corresponding permutation polytope. Let b ∈ R
n be

a point and let β1 ≥ β2 ≥ . . . ≥ βn be the ordering of the coordinates of b. Then
b ∈ P (a) if and only if

k∑
i=1

βi ≤
k∑

i=1

αi for k = 1, . . . , n− 1

and
n∑

i=1

βi =

n∑
i=1

αi.

Proof. We prove the result assuming that α1 > α2 > . . . > αn. The proof in the

general case follows then by a continuity argument.

We know that dimP (a) = n− 1 and that P (a) lies in the affine hyperplane

H =
{
(ξ1, . . . , ξn) : ξ1 + . . .+ ξn = α1 + . . .+ αn

}

(see Problem 3, Section II.6.1). Problem 2 of Section 2.2 implies that the facets FS
of P are indexed by the partitions S = S1∪S2 of the set {1, . . . , n} into non-empty

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



258 VI. Faces of Polytopes

disjoint subsets. Suppose that |S1| = s1 and |S2| = s2, so s1, s2 > 0 and s1+s2 = n.
The facet FS is a convex hull of the points x = σ(a), x = (ξ1, . . . , ξn) such that

{
ξi : i ∈ S1

}
=
{
α1, . . . , αs1

}
and

{
ξi : i ∈ S2

}
=
{
αs1+1, . . . , αsn

}
.

It follows then that in H the facet FS is defined by the inequality

(2.3.1)
∑
i∈S1

ξi ≤
s1∑
i=1

αi

since (2.3.1) is trivially satisfied on all vertices of P and is sharp on the vertices

from FS . Lemma 1.5 implies that b ∈ P (a) if and only if b ∈ H and b satisfies the

inequality (2.3.1) for every facet FS of P . Since for every subset S1 ⊂ {1, . . . , n}
we have ∑

i∈S1

βi ≤
s1∑
i=1

βi,

the result follows. �

3. The Euler-Poincaré Formula

In this section, we prove a classical relation for the number of faces of an arbitrary

polytope. Throughout this section, we use the Euler characteristic χ (see Section

I.7). For a set A ⊂ R
d, we write simply χ(A) instead of χ([A]). In what follows,

we agree that a polytope P is a face of itself. By convention, the dimension of the

empty face is −1.

(3.1) Lemma. Let P ⊂ R
d be a d-dimensional polytope, let ∂P be the boundary

of P and let intP be the interior of P . Then

χ(∂P ) = 1 + (−1)d−1 and χ(intP ) = (−1)d.

Proof. Since ∂P is the union of faces of P , the indicator function [∂P ] belongs to

the algebra K(Rd) of compact convex sets, so χ(∂P ) is defined. We prove the first

identity by induction on d. If d = 1, then P is an interval, so ∂P consists of two

points and χ(∂P ) = 2.

Let us introduce a family of hyperplanes Hτ =
{
(ξ1, . . . , ξd) : ξd = τ

}
for

τ ∈ R. By Lemma I.7.5,

χ(∂P ) =
∑
τ∈R

(
χ(∂P ∩Hτ )− lim

ε−→+0
χ(∂P ∩Hτ−ε)

)
.

Let

τmin = min
x∈P

ξd and τmax = max
x∈P

ξd.

For any τmin < τ < τmax, the intersection P ∩ Hτ is a (d − 1)-dimensional poly-

tope and ∂(P ∩ Hτ ) = ∂P ∩ Hτ . Therefore, χ(∂P ∩ Hτ ) = 1 + (−1)d−2 for all
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τ ∈ [τmin, τmax]. Furthermore, for τ = τmin and τ = τmax, the intersection P ∩Hτ is

a face of P lying in ∂P . Therefore, χ(∂P∩Hτ ) = 1 for τ = τmax or τ = τmin. Finally,

for τ > τmax and τ < τmin, the intersection P ∩Hτ is empty, so χ(P ∩Hτ ) = 0.

�

�

�

min

max

Figure 71. The boundary of a polytope and its “slices”

Summarizing,

χ(∂P ) = 1− (1 + (−1)d−2) + 1 = 1 + (−1)d−1,

as claimed. Now we observe that [intP ] = [P ]− [∂P ] and hence

χ(intP ) = χ(P )− χ(∂P ) = 1− 1− (−1)d−1 = (−1)d.

�

Now we are ready to obtain the Euler-Poincaré Formula for polytopes.

(3.2) Corollary (The Euler-Poincaré Formula).

Let P ⊂ R
d be a d-dimensional polytope and let fi(P ) be the number of

i-dimensional faces of P . Then

d−1∑
i=0

(−1)ifi(P ) = 1 + (−1)d−1.

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



260 VI. Faces of Polytopes

Proof. For every (non-empty) face F of P , including P itself, let intF be the

interior of F considered in its affine hull (in particular, if F is a vertex of P , then

intF = F ). Then we can write:

[P ] =
∑
F

[intF ],

where the sum is taken over all non-empty faces F of P including P ; cf. Figure 72.

+ +=

Figure 72. Writing a polytope as the sum of the interiors of the faces

Let us apply the Euler characteristic χ to the both sides of the identity. By

Lemma 3.1, χ[intF ] = (−1)dimF and the result follows. �

The first complete proof of Corollary 3.2 was, apparently, obtained by H.

Poincaré in 1893 (using methods of algebraic topology). A somewhat incomplete

proof was given by L. Schläfli in 1852. The formula for d ≤ 3 was known to L.

Euler.

(3.3) Definition. Let P be a d-dimensional polytope. The d-tuple
(
f0(P ), . . . ,

fd−1(P )
)
, where fi(P ) is the number of i-dimensional faces of P , is called the

f-vector of P . By convention, f−1(P ) = fd(P ) = 1.

PROBLEMS.

1. Let P ⊂ R
d be a d-dimensional polytope and let H ⊂ R

d be an affine

hyperplane passing through an interior point of P and not containing any of the

vertices of P . Let H+ be an open halfspace bounded by H and let f+
i be the

number of i-dimensional faces contained in H+. Prove that

d−1∑
i=0

(−1)if+
i = 1.

2. Let P ⊂ R
d be a d-dimensional polytope and let � : Rd −→ R be a linear

functional, which takes different values on different vertices of P . For a vertex

v of P , let us denote by fv
i the number of i-dimensional faces F of P such that

�(v) = max{�(x) : x ∈ F}. Prove that

d−1∑
i=0

(−1)ifv
i =

⎧
⎪⎨
⎪⎩

1 if �(v) is the minimum of � on P,

(−1)d−1 if �(v) is the maximum of � on P,

0 otherwise.
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3. Let P be a d-dimensional polytope and let F ⊂ P be its k-dimensional face.

Let fj(F, P ) denote the number of j-dimensional faces of P that contain F . Prove

that
d−1∑
j=k

(−1)jfj(F, P ) = (−1)d−1.

4. Let P ⊂ R
d be an unbounded d-dimensional polyhedron, which does not

contain a straight line. Let f0
i (P ) be the number of bounded i-dimensional faces of

P , let f∞
i be the number of unbounded i-dimensional faces of P and let fi(P ) =

f0
i (P ) + f∞

i (P ) be the total number of i-dimensional faces of P . Prove that

d−1∑
i=0

(−1)if0
i (P ) = 1,

d∑
i=1

(−1)i+1f∞
i (P ) = 1 and

d∑
i=0

(−1)ifi(P ) = 0.

5. Let P ⊂ R
d be a 3-dimensional polytope. Let us define the curvature κ(v)

at a vertex v of P as follows. Let F1, . . . , Fm be the facets containing v. Then Fi

is a planar polygon and let αi be the angle at the vertex v of Fi. Let

κ(v) = 2π −
m∑
i=1

αi.

Prove the Gauss-Bonnet Formula:

∑
v

κ(v) = 4π,

where the sum is taken over all vertices v of P .

Remark: The general Gauss-Bonnet Formula asserts that the value of the sim-

ilar sum taken over the vertices of an oriented polyhedral 2-dimensional surface

S is 2πχ(S), where χ is the Euler characteristic. For smooth surfaces the sum is

replaced by an integral.

6. Let us fix d ≥ 1. In R
d, consider the set of all f -vectors of d-dimensional

polytopes. Prove that the affine hull of this set is the hyperplane
∑d−1

i=0 (−1)ifi =
1+(−1)d−1. In other words, prove that there are no linear relations for the numbers

fi of i-dimensional faces other than the Euler-Poincaré Formula, which would hold

for all d-dimensional polytopes.

7. A finite set P =
{
Pi ⊂ R

d, i ∈ I
}
of distinct polytopes in R

d is called a

polytopal complex provided the following two conditions are satisfied: for any two

polytopes Pi, Pj ∈ P, the intersection Pi ∩ Pj is a face of both Pi and Pj and if

Pi ∈ P and F is a face of Pi, then F ∈ P. The union

|P| =
⋃
i∈I

Pi

is called the support of P.
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Let P be a polytopal complex, let |P| ⊂ R
d be its support and let fi(P) be the

number of i-dimensional polytopes in P. Prove that

χ(|P|) =
d∑

i=0

(−1)ifi(P).

8. Let P ⊂ R
d be a d-dimensional polytope. Prove that

(−1)d[intP ] =
∑
F

(−1)dimF [F ],

where the sum is taken over all faces F of P , including P .

4. Polytopes with Many Faces: Cyclic Polytopes

Our goal is to construct polytopes with many faces. To this end, we modify the

definition of the moment curve; see Section II.9.1.

(4.1) Definition. Let us fix an interval, say, [0, 1] ⊂ R
1. Let

q(τ ) = (τ, τ2, . . . , τd) : 0 ≤ τ ≤ 1

be a curve in R
d. Let us pick n distinct points 0 < τ1 < τ2 < . . . < τn < 1 and let

vi = q(τi) for i = 1, . . . , n. The polytope

C(d, n) = conv(v1, . . . , vn)

is called the cyclic polytope.

Although the construction depends on how the points τ1 < τ2 < . . . < τn are

chosen, we will see soon that the facial structure of C(d, n) is independent of the

choice of the points as long as their number n is fixed.

PROBLEMS.

1◦. Prove that each affine hyperplane H ⊂ R
d intersects the moment curve

q(τ ) in at most d points.

2◦. Prove that dimC(d, n) = d for n ≥ d+ 1.

It turns out that any subset of at most d/2 vertices of C(d, n) is the set of

vertices of some face of C(d, n). For example, every two vertices of the 4-dimensional

polytope C(4, n) are neighbors (the endpoints of an edge).

(4.2) Proposition. Let C(d, n) = conv(v1, . . . , vn) be a cyclic polytope. Let
I ⊂ {1, . . . , n} be a set such that |I| ≤ d/2. Then F = conv

(
vi : i ∈ I

)
is a

face of C(d, n).
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Proof. We will find a non-zero vector c = (γ1, . . . , γd) and a number α such that

〈c, vi〉 = α for i ∈ I and 〈c, vi〉 < α for i /∈ I.

This would clearly imply that F is a face of C(d, n).

Let I = {i1, i2, . . . , ik}, hence k ≤ d/2. Let us consider a polynomial p of

degree d in τ :
p(τ ) = −τd−2k(τ − τi1)

2 · · · (τ − τik)
2.

Hence p(τi) = 0 for i ∈ I and p(τi) < 0 for i ∈ {1, . . . , n} \ I. Let us write

p(τ ) = γdτ
d + γd−1τ

d−1 + . . .+ γ1τ1 − α

and let c = (γ1, . . . , γd). Then

〈
c, q(τ )

〉
= γ1τ + γ2τ

2 + . . .+ γdτ
d = p(τ ) + α.

Hence 〈c, vi〉 = α for i ∈ I and 〈c, vi〉 < α for i /∈ I and the result follows. �

PROBLEMS.

1. Let P = conv(v1, . . . , vn) ⊂ R
d be a d-dimensional polytope with n vertices

and let k > d/2. Prove that if every k vertices vi1 , . . . , vik are the vertices of a face

of P , then n = d+ 1.

Hint: Use Radon’s Theorem (see Theorem I.4.1).

2. Let I ⊂ {1, . . . , n} be a set, |I| = d. Prove that F = conv(vi : i ∈ I) is

a facet of C(d, n) if and only if Gale’s evenness condition is satisfied: every two

elements i, j which are not in I are separated by an even number of elements from

I.

Figure 73. Example: white dots are not in I; black dots are in I.
Gale’s condition is satisfied.

3. Describe the faces of the polytope C(4, n).

4∗. Prove that for 1 ≤ k ≤ d − 1, the number fk of k-dimensional faces of

C(d, n) is

fk =

{ ∑(d+1)/2
j=1

n
n−j

(
n−j
j

)(
j

k+1−j

)
if d is odd,

∑d/2
j=0

k+2
n−j

(
n−j
j+1

)(
j+1

k+1−j

)
if d is even.

5. Let us define a closed curve

φ(τ ) =
(
sin τ, cos τ, sin 2τ, cos 2τ, . . . , sin kτ, cos kτ

)
, 0 ≤ τ ≤ 2π
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in R
d, d = 2k. Let 0 < τ1 < τ2 < . . . < τn < 2π and let vi = φ(τi). Let

P = conv(v1, . . . , vn). Prove that P and C(d, n) have the same facial structure.

In particular, the facial structure of P does not depend on the choice of 0 < τ1 <
. . . < τn < 2π and the cyclic permutation v1 �−→ v2 �−→ . . . �−→ vn �−→ v1 gives

rise to a permutation of faces of C(d, n).

The cyclic polytope C(d, n) has the following important property: among all

polytopes in R
d with n vertices, the polytope C(d, n) has the largest number of

faces of each dimension k = 1, . . . , d− 1. Our next goal is to sketch a proof of this

result.

5. Simple Polytopes

In this section, we introduce an important class of polytopes.

(5.1) Definitions. A d-dimensional polytope P is called simple if every vertex

v of P belongs to exactly d facets of P . In particular, suppose that a polytope

P ⊂ R
d with dimP = d is defined as a d-dimensional bounded polyhedron,

P =
{
x ∈ R

d : 〈ci, x〉 ≤ βi for i = 1, . . . ,m
}
.

Then P is simple provided for every vertex v of P the set I(v) = {i : 〈ci, v〉 = βi}
of inequalities that are active on v consists of precisely d elements (cf. Theorem

II.4.2).

PROBLEMS.

1◦. Prove that the cube I =
{
x ∈ R

d : −1 ≤ ξi ≤ 1 for i = 1, . . . , d
}
is a

simple polytope and that the (hyper)octahedron O =
{
x ∈ R

d : |ξ1|+. . .+|ξd| ≤ 1
}

is not simple for d > 2.

2. A polytope which is the convex hull of affinely independent points is called

a simplex. Let P ⊂ R
d be a polytope such that 0 ∈ intP . Prove that P is simple

if and only if every facet of P ◦ is a simplex (such polytopes are called simplicial).

3. Prove that if a polytope is both simple and simplicial (see Problem 2 above),

then it is either a simplex or a polygon.

4◦. Let us fix a vector a = (α1, . . . , αd) with distinct coordinates and let P (a)
be the corresponding permutation polytope (see Section 2). Prove that P (a) is a

simple (d− 1)-dimensional polytope.

5. Prove that the cyclic polytope C(d, n) is simplicial.

6. Let P ⊂ R
d be a polytope, let v be a vertex of P and let u1, . . . , un be

the neighbors of P . Suppose that � : Rd −→ R is a linear functional such that

�(v) > �(ui) for i = 1, . . . , n. Prove that the maximum of � on P is attained at v.

Locally, in the neighborhood of every vertex, a simple d-dimensional polytope

P looks like the standard non-negative orthant

R
d
+ =
{
(ξ1, . . . , ξd) : ξi ≥ 0 for i = 1, . . . , d

}
.

The following result summarizes some useful properties of simple polytopes.
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(5.2) Proposition. Let P ⊂ R
d be a d-dimensional simple polytope. Then

1. Every vertex v of P has precisely d neighbors u1, . . . , ud.
2. For every vertex v of P and for every k < d neighbors ui1 , . . . , uik of v there

exists a unique k-dimensional face F of P containing v and ui1 , . . . , uik .
3. The intersection of any k ≤ d facets of P containing v is a (d − k)-

dimensional face of P .
4. Let � : Rd −→ R be a linear functional such that �(ui) < �(v) for all neighbors

ui of some vertex v of P . Then the maximum of � on P is attained at v.
5. Every face of P is a simple polytope.

Proof. Let

P =
{
x ∈ R

d : 〈ci, x〉 ≤ βi for i = 1, . . . ,m
}

and let v ∈ P be a vertex. Translating P , if necessary, we may assume that v = 0 is

the origin, and changing the basis, if necessary, we may assume that the inequalities

that are active on v are ξi ≥ 0 for i = 1, . . . , d. Thus P is the intersection of the

non-negative orthant R
d
+ =
{
(ξ1, . . . , ξd) : ξi ≥ 0 for i = 1, . . . , d

}
with finitely

many halfspaces containing the origin in their interior.

u

u

u

�

�

�
v = 0

= 0

= 0

= 0

3

3

1

1

2
2

Figure 74

To prove Part 1, note that v belongs to exactly d edges; the i-th edge is the

intersection of P with the hyperplane
∑

j �=i ξj = 0. The other endpoints of these

edges are the neighbors u1, . . . , ud of v. Thus all but the i-th coordinate of ui are

0 and the i-th coordinate of ui is positive. Let us prove that there are no other

edges with the endpoint v = 0. Indeed, suppose that c = (γ1, . . . , γd) is a vector

such that 0 = 〈c, v〉 ≥ 〈c, x〉 for all x ∈ P , so that F =
{
x : 〈c, x〉 = 0

}
is a face

of P containing v. Substituting x = ui, we get that γi ≤ 0 for i = 1, . . . , d. Then

F =
{
x ∈ P :

∑
i:γi<0 ξi = 0

}
, which is an edge of P if and only if all but one γi

are equal to 0.

To prove Part 2, note that F is the intersection of P with the hyperplane∑
j �=i1,... ,ik

ξj = 0.
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To prove Part 3, we observe that the i-th facet is defined by the equation ξi = 0.

Therefore, the intersection of the facets with the indices i1, i2, . . . , ik is the face F
defined by the equation

∑
j=i1,... ,ik

ξj = 0. Clearly dimF = d−k, since F contains

a point where ξj > 0 for j �= i1, . . . , ik.

To prove Part 4, assume that �(x) = γ1ξ1 + . . .+ γdξd. Hence we have �(ui) <
�(v) = 0, so all γi’s are negative. Therefore �(x) ≤ 0 for any x ∈ R

d
+ and �(x) = 0

if and only if x = v = 0.

To prove Part 5, it suffices to prove that if F is a facet of P , then F is a

(d − 1)-dimensional simple polytope. Let us choose a vertex v of F . Then v is a

vertex of P and there are exactly d facets G1, . . . , Gd of P containing v. Without

loss of generality, we may assume that F = Gd. As above, we may assume that

v = 0 and that Gi is defined by the equation ξi = 0. Then F ∩Gi, i = 1, . . . , d− 1,

are the facets of F containing v (cf. Part 3). �

Note that Part 4 of Proposition 5.2 holds for all (not necessarily simple) poly-

topes; cf. Problem 6 of Section 5.1.

PROBLEMS.

1∗. Let P ⊂ R
d be a d-dimensional polytope with n facets. Construct a

simple d-dimensional polytope P̃ ⊂ R
d with n facets such that fi(P ) ≤ fi(P̃ ) for

i = 0, . . . , d− 2, where fi is the number of i-dimensional faces.

Hint: Suppose that

P =
{
x : 〈ci, x〉 ≤ βi for i = 1, . . . , n

}
.

Let

P̃ =
{
x : 〈ci, x〉 ≤ β̃i for i = 1, . . . , n

}
,

where β̃i are generic small perturbations of βi.

2◦. Prove that every face of a simplicial polytope is a simplex (see Problem 2,

Section 5.1).

3. Prove that a d-dimensional polytope is simple if every vertex of the polytope

has precisely d neighbors.

4. Let P be a simple d-dimensional polytope. Prove that df0(P ) = 2f1(P ).

5. Let P be a 3-dimensional simple polytope. Then the facets of P are polygons

and let pk be the number of k-gons among its facets. Prove that 3p3 + 2p4 + p5 =

12 +
∑

k≥7(k − 6)pk.

6∗. Let pk for k > 2, k �= 6 be non-negative integers such that 3p3 +2p4 + p5 =

12 +
∑

k≥7(k − 6)pk. Prove that for some p6 there exists a simple 3-dimensional

polytope whose facets consist of pk k-gons for k = 3, 4, 5, . . . .

Remark: This is Eberhard’s Theorem; see Section 13.3 of [Gr67].
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6. The h-vector of a Simple Polytope. Dehn-Sommerville

Equations

The information about the number of faces of a simple polytope is best encoded by

its h-vector.

(6.1) Definition. Let P be a d-dimensional simple polytope and let fi(P ) be the

number of the i-dimensional faces of P (we agree that fd(P ) = 1). Let

hk(P ) =

d∑
i=k

(−1)i−k

(
i

k

)
fi(P ) for k = 0, . . . , d,

where

(
m

n

)
=

m!

n!(m− n)!
is the binomial coefficient.

The (d+ 1)-tuple
(
h0(P ), . . . , hd(P )

)
is called the h-vector of P .

(6.2) Lemma. Let P be a d-dimensional simple polytope. Then

fi(P ) =

d∑
k=i

(
k

i

)
hk(P ) for i = 0, . . . , d.

Furthermore, the numbers hk(P ) are uniquely determined by the above equations.

Proof. Let us introduce two polynomials in one variable τ :

f(τ ) =

d∑
i=0

fi(P )τ i and h(τ ) =

d∑
k=0

hk(P )τk.

Then the equations of Definition 6.1 are equivalent to the identity f(τ − 1) = h(τ ),
whereas the equations of Lemma 6.2 are equivalent to the identity f(τ ) = h(τ +1).

The result now follows. �

We observe that the expession of fi(P ) in terms of hk(P ) is a linear combination

with non-negative coefficients. Therefore, a bound for hk(P ) for k = 0, . . . , d easily

implies a bound for fi(P ) for i = 0, . . . , d. The following is the main result of this

section.

(6.3) Theorem. Let P ⊂ R
d be a simple d-dimensional polytope. Let � : Rd −→ R

be a linear functional such that �(vi) �= �(vj) for every pair of neighbors vi, vj. For a
vertex v of P let us define the index of v with respect to � as the number of neighbors
vi of v such that �(vi) < �(v). Then for every 0 ≤ k ≤ d the number of vertices of
P with index k with respect to � is equal to hk(P ). In particular, this number does
not depend on the functional �.
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Proof. Let us count the i-dimensional faces F of P . On one hand, we know

that this number is fi(P ). On the other hand, on every i-dimensional face F
let us mark the unique vertex v ∈ F where the maximum of � on F is attained:

�(v) = maxx∈F �(x) (cf. Part 4 of Proposition 5.2). Let us see how many times a

given vertex v ∈ P gets marked.

Suppose that the index of v is equal to k ≥ i. Then there are exactly k neighbors

vj of v for which �(vj) < �(v) (we call them the lower neighbors of v as opposed to

the d− k neighbors vi for which �(vi) > �(v) and which we call the upper neighbors
of v). By Part 2 of Proposition 5.2, for any i of the lower neighbors there exists

a unique i-dimensional face F containing them and by Part 4 of Proposition 5.2,

� attains its maximum on F at v. Conversely, if F is an i-dimensional face such

that the maximum of � on F is attained at v, then v should have i neighbors vj
(see Parts 5 and 1 of Proposition 5.2) and for every such neighbor vj we must have

�(vj) < �(v). In particular, the index of v with respect to � must be at least i.

Summarizing, we observe that every vertex v of index k ≥ i is marked precisely(
k

i

)
times and that the vertices whose indices are smaller than i are not marked

at all. Denoting for a moment by hk(P, �) the number of vertices of P whose index

with respect to � is k, we conclude that

fi(P ) =

d∑
k=i

(
k

i

)
hk(P, �) for i = 0, . . . , d.

3

2

2

11

0

l 

2
v

1

P

Figure 75. Example: a polytope P , a linear function 	 and a vertex v.
The numbers show the index of the corresponding vertex. The arrows

show the direction along which 	 decreases. We have h3(P ) = 1, h2(P ) =

3, h1(P ) = 3 and h0(P ) = 1. There are two edges (bold) and one 2-

dimensional face (shaded) with the maximum of 	 attained at v.
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By Lemma 6.2, the numbers hk(P, �) are uniquely determined by the above

identities and must coincide with hk(P ). �

(6.4) Corollary (Dehn - Sommerville Equations). Let P be a simple d-dimen-
sional polytope. Then

hk(P ) = hd−k(P ) for k = 0, . . . , d.

Proof. Let us choose a linear functional � : Rd −→ R such that �(vi) �= �(vj) for

any two neighboring vertices vi, vj of P . Then hk(P ) is the number of vertices of

P that have index k with respect to � (Theorem 6.3). Applying Theorem 6.3 with

the functional −�, we conclude that the number of vertices of P with index d − k
with respect to −� is equal to hd−k(P ). The proof is completed by the observation

that the index of a vertex with respect to � is k if and only if the index of the vertex

with respect to −� is d− k. �

The relations (in a different form) were found by M. Dehn in 1905 for d ≤ 5

and for an arbitrary d by D. Sommerville in 1927. The idea of the above proof is

due to P. McMullen; see [MSh71].

PROBLEMS.

1◦. Prove that
∑d

k=0 hk(P ) = f0(P ).

2◦. Let P be a simple d-dimensional polytope. Check that the equation

h0(P ) = hd(P ) is the Euler-Poincaré Formula for P .

3◦. Prove that hk(P ) ≥ 0 for every simple polytope P .

4. Compute the h-vector of a d-dimensional simplex (the convex hull of d+ 1

affinely independent points in R
d).

5. Let P be a simple 3-dimensional polytope. Prove that the Dehn-Sommerville

equations for P are equivalent to f0 − f1 + f2 = 2 and 3f0 − 2f1 = 0. In particular,

the number of faces of a simple 3-dimensional polytope is determined by the number

of vertices.

6. Let P be a simple 4-dimensional polytope. Prove that the Dehn-Sommerville

equations for P are equivalent to f0 − f1 + f2 − f3 = 0 and f1 = 2f0.

7. Let I =
{
(ξ1, . . . , ξd) : 0 ≤ ξi ≤ 1

}
be a d-dimensional cube. Prove that

hk(I) =
(
d
k

)
for k = 0, . . . , d.

8. For a permutation σ of the set
{
1, . . . , n

}
, let us define a descent as a number

i = 2, . . . , n such that σ(i) < σ(i− 1). Let E(n, k) be the number of permutations

having precisely k − 1 descents, k = 1, . . . , n. Let a = (α1, . . . , αn) be a point

with distinct coordinates α1 > . . . > αn and let P = P (a) be the corresponding

permutation polytope (see Section 2). Then P (a) is a simple (n − 1)-dimensional

polytope (see Problem 4, Section 5.1) and one can define hk(P ) for k = 0, . . . , n−1.

Prove that hk(P ) = E(n, k+1) and that E(n, k) = E(n, n−k+1) for k = 1, . . . , n.
The numbers E(n, k) are called Eulerian numbers.
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7. The Upper Bound Theorem

In this section, we sketch a proof of the Upper Bound Theorem, which tells us the

maximum number of faces that a polytope of a given dimension and with a given

number of vertices (equivalently, facets) may have. The proof below belongs to

P. McMullen (1970). More precisely, McMullen gave a detailed proof which is, in

a sense, dual to our approach, but he also remarked about what the dual (to his

proof, that is, our proof) looks like.

(7.1) Lemma. Let P be a d-dimensional simple polytope and let F be a facet.
Then F is a (d− 1)-dimensional simple polytope and

hk(F ) ≤ hk(P ) for k = 0, . . . , d− 1.

Moreover, if the intersection of every k+1 facets of P is non-empty, then hk(F ) =

hk(P ).

Proof. Part 5 of Proposition 5.2 implies that F is a simple polytope. Since F is a

facet of P , there is a linear functional � and a number α such that �(x) ≥ α for any

x ∈ P and �(x) = α if and only if x ∈ F . In particular, �(v) > α for any vertex v

of P that is not in F . Let us perturb � �−→ �̃ slightly so that �̃ has different values

on different vertices of P and �̃(v) > �̃(u) for every pair of vertices u and v of P ,

where v /∈ F and u ∈ F .

P P

F F

l l
~

0

1

1

1

1

2

a ) b )

Figure 76. a) A polytope P , a facet F of P and a linear function

	 attaining its minimum on F , b) a perturbed linear function 	̃. Now

every vertex of the polytope acquires an index.
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Theorem 6.3 asserts that hk(P ) (resp. hk(F )) is the number of vertices of P

(resp. of F ) that have index k with respect to �̃. Let v be a vertex of F of index k.
Then v has d − 1 neighbors u1, . . . , ud−1 in F and precisely k of them produce a

smaller value of �̃. As a vertex of P , v has one additional neighbor ud /∈ F , where

we have �̃(ud) > �̃(v). Therefore, the index of v in P is also k. Hence we proved

that hk(F ) ≤ hk(P ).

Suppose that the intersection of every k facets of P is non-empty. Suppose that

v is a vertex of P of index k and v is not in F . There are d−k upper neighbors, say,

uk+1, . . . , ud of v such that �̃(ui) > �̃(v) for all i = k + 1, . . . , d. Then, by Part 2

of Proposition 5.2, there is d− k-dimensional face G containing v and uk+1, . . . , ud

and by Part 4 it follows that �̃ achieves its minimum value on G at v. Moreover,

using Part 3 of Proposition 5.2, we can represent G as the intersection of k facets,

G = F1 ∩ . . . ∩ Fk, where Fi is a facet of P containing v and all but ui of its lower

neighbors. Then the intersection F ∩F1∩ . . .∩Fk = F ∩G is non-empty, and hence

we must have �̃(x) > �̃(v) for some x ∈ F , which is a contradiction; see Figure 76.

?

F

vl
~

u

G

k + 1

u
d

d - 1
u

x

Figure 77. A vertex v, its upper neighbors uk+1, . . . , ud and a face

G containing them all. For x ∈ G ∩ F we must have 	̃(x) > 	̃(v), which
is a contradiction.

The contradiction shows that there are no points of index k outside of F and

hence hk(F ) = hk(P ). �

(7.2) Lemma. Let P be a simple d-dimensional polytope. Then

∑
F is a facet of P

hk(F ) = (d− k)hk(P ) + (k + 1)hk+1(P ).
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Proof. To prove the formula, let us choose a linear functional �, which attains

different values at neighbors in P . By Theorem 6.3, the left-hand side of the

formula counts the vertices on the facets of P that have index k relative to the

facet. Let us see how many times a given vertex v of P gets counted. There are

exactly d facets of P containing v and each such facet F of P contains all but one

neighbor of v (see Part 2 of Proposition 5.2).

If the index of v in P with respect to � is smaller than k, then there are fewer

than k lower neighbors ui of v with �(ui) < �(v), so v is not counted at all in the

left-hand side.

Similarly, if the index of v is greater than k+1, then every facet F contains at

least k+1 lower neighbors ui of v with �(ui) < �(v), and so v is not counted in the

left-hand side.

a ) b )

c )

d )

l

v v

v

v

Figure 78. Example: let k = 3. In how many ways can we choose a

facet F so that the index of v relative to F is k? a) If there are fewer

than k lower neighbors, there is no F . b) If there are more than k + 1

lower neighbors, there is no F . c) If there are k lower neighbors, we can

choose F in d − k ways by choosing an upper neighbor not in F . d)

If there are k + 1 lower neighbors, we can choose F in k + 1 ways by

choosing a lower neighbor not in F .

If the index of v in P is k, then there are precisely k lower neighbors u1, . . . , uk

of v with �(ui) < �(v). Then there are precisely d− k facets F of P that contain v
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and all its neighbors except one of d− k upper neighbors. Hence every vertex v of

P of the index k is counted d− k times.

Finally, suppose that the index of v in P is k + 1. Thus v has k + 1 lower

neighbors. Then there are exactly k + 1 facets F of P such that the index of v
relative to the facet is k. The i-th such facet F is determined uniquely by the

condition that it contains v and all the neighbors of v except one lower neighbor

ui. Hence a vertex v of P of index k + 1 is counted k + 1 times. The proof now

follows. �

Summarizing, we get

(7.3) Theorem. Let P be a d-dimensional simple polytope with n facets. Then

hk(P ) ≤
(
n− d+ k − 1

k

)
for k = 0, . . . , d.

Moreover, if the intersection of every k facets of P is non-empty, then

hk(P ) =

(
n− d+ k − 1

k

)
.

Proof. Combining Lemma 7.1 and Lemma 7.2, we get

nhi(P ) ≥ (d− i)hi(P ) + (i+ 1)hi+1(P )

or

hi+1(P ) ≤ n− d+ i

i+ 1
hi(P ) for i = 0, . . . , d,

and the equality holds if every i+ 1 facets of P intersect.

Combining it with h0(P ) = hd(P ) = 1, we get the desired inequality. �

Let C(d, n) ⊂ R
d be the cyclic polytope and let Q(d, n) be the polar of C(d, n)

with the origin chosen in the interior of C(d, n). Hence Q(d, n) is a d-dimensional

polytope with n facets and for every k ≤ d/2, the intersection of any k facets of

Q(d, n) is a (d − k)-dimensional face of Q(d, n); cf. Proposition 4.2 and Theorem

1.3. Now we prove the celebrated Upper Bound Theorem which asserts that Q(d, n)
has the largest number of faces of any dimension among all d-dimensional polytopes

with n facets.

(7.4) The Upper Bound Theorem. Let P be a d-dimensional polytope with n
facets and let Q be a d-dimensional simple polytope with n facets, such that for
every k ≤ d/2, the intersection of k facets of Q is a (d− k)-dimensional face of Q.
Then

fi(P ) ≤ fi(Q) for all i = 0, . . . , d− 1.

Moreover, for i ≤ �d/2�,

(7.4.1) fi(Q) =

�d/2�∑
k=i

(
k

i

)(
n− d+ k − 1

k

)
+

d∑
k=�d/2�+1

(
k

i

)(
n− k − 1

d− k

)
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and for i > �d/2�,

(7.4.2) fi(Q) =

(
n

d− i

)
.

Proof. The equation (7.4.2) is obvious. By Theorem 7.3,

(7.4.3) hk(Q) =

(
n− d+ k − 1

k

)
for k = 0, . . . , �d/2�.

Combining this with the Dehn-Sommerville equations hk(Q) = hd−k(Q) (Corollary

6.4) for k > d/2, we get (7.4.1) from Lemma 6.2.

If P is a simple polytope, then from Theorem 7.3 and (7.4.3), we have

hk(P ) ≤ hk(Q) for k ≤ d/2. Combining this with the Dehn-Sommerville equations,

we get hk(P ) ≤ hk(Q) for all k = 0, . . . , d. Then by Lemma 6.2, fi(P ) ≤ fi(Q) for

all i = 1, . . . , d− 1.

The case of an arbitrary polytope P reduces to that of a simple polytope P by

Problem 1, Section 5.2. �

PROBLEMS.

1. Let us fix the dimension d. Prove that the number of faces of a polytope

P ⊂ R
d with n facets is O(n�d/2�).

Remark: A simple proof of this fact due to R. Seidel [Se95] goes as follows. It

suffices to bound the number of vertices of a simple polytope P . Let us choose a

generic linear functional �. Then every vertex v of P has either at most d/2 lower

neighbors or at most d/2 upper neighbors with respect to �. Consequently, v is

either the highest point or the lowest point of some face F of P with dimF ≤ d/2.
Therefore, the number of vertices is at most twice as big as the number of faces F
with dimF ≤ d/2.

2. Deduce the Upper Bound Theorem for d-dimensional polytopes with n
vertices.

3. Write the inequalities of the Upper Bound Theorem for a 4-dimensional

polytope with n facets and for a 4-dimensional polytope with n vertices.

4∗. Let P be a simple d-dimensional polytope. Prove the Unimodality Theo-

rem: h0(P ) ≤ h1(P ) ≤ h2(P ) ≤ . . . ≤ h�d/2�(P ).

Remark: The proof was first obtained by R. Stanley using a technique from

algebraic geometry [St80]. A “convex geometry” proof was later found by P. Mc-

Mullen in [Mc93b] and [Mc96].

8. Centrally Symmetric Polytopes

Let P ⊂ R
d be a d-dimensional polytope. Suppose that P is symmetric about the

origin (or centrally symmetric), that is, P = −P .
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In this section, we prove that a centrally symmetric polytope must have either

many vertices or many facets or both. Apart from the result itself, the method of

proof is very interesting. For the first time in this chapter we rely on metric and

measure arguments.

The following result was obtained by T. Figiel, J. Lindenstrauss and V.D.

Milman [FLM77].

(8.1) Proposition. There exists a constant γ > 0 such that for any centrally
symmetric d-dimensional polytope P with |V | vertices and |F | facets one has

ln |V | · ln |F | ≥ γd.

Proof. Let P be a d-dimensional centrally symmetric polytope. Applying a suit-

able linear transformation, we may assume that the maximum volume ellipsoid of

P is the unit ball B =
{
x : ‖x‖ ≤ 1

}
; see Section V.2. Hence, by Theorem V.2.5,

B ⊂ P ⊂
√
dB.

Let S
d−1 =

{
x ∈ R

d : ‖x‖ = 1
}

be the unit sphere and let ν be the Haar

probability measure on S
d−1; see Section V.7.

For x �= 0 let us denote by x = x/‖x‖ the radial projection of x onto the unit

sphere S
d−1. Let us choose some ε > 0 and consider the set Aε ⊂ S

d−1 defined as

follows:

Aε =
{
c ∈ S

d−1 : 〈c, v〉 ≥ ε for some v ∈ V
}
.

By Lemma V.7.1, we have

ν(Aε) ≤ 2|V | exp
{
−ε2d/16

}
.

We observe that for every c ∈ S
d−1 \Aε

max{〈c, x〉 : x ∈ P} = max{〈c, v〉 : v ∈ V } ≤
√
dmax{〈c, v〉 : v ∈ V } ≤ ε

√
d.

We want to choose an ε > 0 so that ν(Aε) ≤ 1/3. We can take, say,

ε = γ1d
−1/2 ln1/2 |V |,

where γ1 > 0 is a sufficiently large number. Then

(8.1.1) max{〈c, x〉 : x ∈ P} ≤ γ1 ln
1
2 |V | for every c ∈ S

d−1 \Aε.

Suppose that P is given by a system of linear inequalities

P =
{
x ∈ R

d : 〈ai, x〉 ≤ αi for i = 1, . . . , |F |
}

for some ai ∈ R
d. Since P contains the unit ball we must have αi > 0 and,

therefore, using a proper scaling, we can assume that αi = 1 for all i. Since the

point ai/‖ai‖ = ai is in P , we must have ‖ai‖ ≤ 1 for i = 1, . . . , |F |. Thus

P =
{
x ∈ R

d−1 : 〈ai, x〉 ≤ 1 for i = 1, . . . , |F |
}

where ‖ai‖ ≤ 1 for i = 1, . . . , |F |.
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Let us choose some δ > 0 and consider the set Bδ ⊂ S
d−1 defined as follows:

Bδ =
{
c ∈ S

d−1 : 〈c, ai〉 ≥ δ for some i = 1, . . . , |F |
}
.

By Lemma V.7.1, we get

ν(Bδ) ≤ 2|F | exp
{
−δ2d/16

}
.

Let us choose a c ∈ S
d−1 \ Bδ. Since ‖ai‖ ≤ 1, we conclude that 〈c, ai〉 ≤ δ

for i = 1, . . . , |F |. Therefore, the vector x = δ−1c satisfies the system of linear

inequalities 〈ai, x〉 ≤ 1 and hence belongs to the polytope P . Hence for every

c ∈ S
d−1 \Bδ we have

max{〈c, x〉 : x ∈ P} ≥ δ−1.

Now we want to choose a δ > 0 so that ν(Bδ) ≤ 1/3. We can take, say,

δ = γ2d
−1/2 ln

1/2 |F |,

where γ2 > 0 is a sufficiently large number. Then

(8.1.2) max{〈c, x〉 : x ∈ P} ≥ γ−1
2 d

1
2 ln−

1
2 |F | for every c ∈ S

d−1 \Bδ.

Since ν(Aε) ≤ 1/3 and ν(Bδ) ≤ 1/3, there is a point c /∈ Aε ∪Bδ and for such

c both (8.1.1) and (8.1.2) are satisfied. Thus we have

γ−1
2 d

1
2 ln−

1
2 |F | ≤ γ1 ln

1
2 |V |,

or, in other words,

ln |V | · ln |F | ≥ γd,

where γ = (γ1γ2)
−2. �

PROBLEMS.

1. Prove that there exists γ > 0 such that for any k ≤ l ≤ d and for any

centrally symmetric d-dimensional polytope P we have ln fl · ln fk ≥ γ(l−k), where
fi is the number of i-dimensional faces of P .

2. Let B ⊂ R
d be the unit ball centered at the origin. Prove that there exists

an absolute constant γ > 0 such that for any polytope P ⊂ R
d with the property

that B ⊂ P ⊂ ρB one has

ln |V | · ln |F | ≥ γd2/ρ2,

where |V | is the number of vertices of P and |F | is the number of facets of P .

Here are a couple of open problems.

3∗. Is it true that any d-dimensional centrally symmetric polytope has at least

3d faces?

4∗. What is the maximal number of edges that a centrally symmetric 4-

dimensional polytope can have?
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9. Remarks

For combinatorial theory of polytopes, see [Gr67], [MSh71], [Brø83], [Z95] and

[YKK84]. For the structure of the permutation polytope and related polytopes,

see [BS96] and [YKK84]. Rado’s Theorem (Theorem 2.3) and its ramifications

are discussed in [YKK84] and [MO79]. A simple self-contained proof of the

Euler-Poincaré Formula can be found in [L97]. Our discussion of simple polytopes

(Sections 5–7) follows [Brø83]. The necessary and sufficient algebraic conditions for

a d-tuple (f0, . . . , fd−1) to be the f -vector of a simple (or simplicial) polytope are

known. They were conjectured by P. McMullen, the necessity part was established

by R.P. Stanley [St80] and the sufficiency part was proved by L.J. Billera and C.W.

Lee [BL81].
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Chapter VII

Lattices and Convex

Bodies

We discuss some discrete aspects of convexity. We define a lattice in Euclidean

space and explore how lattices interact with convex bodies. In this chapter, we

focus on metric rather than combinatorial aspects of this interaction. The landmark

results of this chapter are the theorems of Minkowski and Minkowski-Hlawka with

applications to number theory problems and construction of dense sphere packings

(which are related to coding), flatness results and the Lenstra-Lenstra-Lovász basis

reduction algorithm. Problems address properties of some particular lattices, such

as Z
n, Dn, An, E6, E7 and E8; results on enumeration of lattice points in convex

bodies, such as Pick’s Formula and its extensions; and other interesting results,

such as Doignon’s lattice version of Helly’s Theorem.

1. Lattices

We define the main object of this chapter.

(1.1) Definitions. A set Λ ⊂ R
d is called an (additive) subgroup of Rd provided

• 0 ∈ Λ,

• x+ y ∈ Λ for any two x, y ∈ Λ and

• −x ∈ Λ for any x ∈ Λ.

A subgroup Λ ⊂ R
d is called discrete provided there is an ε > 0 such that the

ball B(0, ε) of radius ε centered at the origin does not contain any non-zero lattice

279
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280 VII. Lattices and Convex Bodies

point:

B(0, ε) ∩ Λ = {0} where B(0, ε) =
{
x : ‖x‖ ≤ ε

}
for some ε > 0.

A discrete subgroup Λ of R
d such that span(Λ) = R

d is called a lattice. The

dimension d is called the rank of Λ and denoted rankΛ.

Given a lattice Λ ⊂ R
d, a set of linear independent vectors u1, . . . , ud ∈ Λ is

called a basis of Λ if every x ∈ Λ can be written in the form x = μ1u1 + . . .+μdud,

where μi ∈ Z for i = 1, . . . , d.

Here are some examples.

(1.2) Examples.

(1.2.1) Let Zd ⊂ R
d be the set of points with integer coordinates:

Z
d =
{
(ξ1, . . . , ξd) : ξi ∈ Z for i = 1, . . . , d

}
.

The lattice Z
d is called the standard integer lattice.

(1.2.2) Let us identify R
d with the hyperplane

H =
{
(ξ1, . . . , ξd+1) ∈ R

d+1 : ξ1 + . . .+ ξd+1 = 0
}

in R
d+1. Let Ad = Z

d+1 ∩H, so Ad ⊂ R
d is a lattice.

a ) b )

0 0

Figure 79. Lattices a) Z2 and b) A2
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(1.2.3) Let us define Dn ⊂ Z
n,

Dn =
{
(ξ1, . . . , ξn) : ξi ∈ Z for i = 1, . . . , n and

ξ1 + . . .+ ξn is an even integer
}
.

(1.2.4) Let n be an even number and let x0 = (1/2, . . . , 1/2) ∈ R
n. Let us define

D+
n = Dn ∪ (Dn + x0), where Dn + x0 =

{
x+ x0 : x ∈ Dn

}
is a shift of Dn (check

that if n is odd, then the set D+
n so defined is not a lattice). The lattice D+

8 is

special and is called E8.

(1.2.5) Let us identify R
7 with the hyperplane

H =
{
(ξ1, . . . , ξ8) : ξ1 + . . .+ ξ8 = 0

}

in R
8. We define E7 = E8 ∩H, so E7 is a lattice in R

7.

(1.2.6) Let us identify R
6 with the subspace L ⊂ R

8,

L =
{
(ξ1, . . . , ξ8) : ξ1 + ξ8 = ξ2 + . . .+ ξ7 = 0

}
.

We define E6 = E8 ∩ L, so E6 is a lattice in R
6.

PROBLEMS.

1◦. Prove that a set Λ ⊂ R
n is a subgroup if and only if Λ is non-empty and

x− y ∈ Λ for any two x, y ∈ Λ.

2◦. Let B(x0, ε) =
{
x : ‖x − x0‖ ≤ ε

}
be the ball centered at x0 of radius ε.

Let Λ ⊂ R
d be a lattice. Prove that if B(0, ε) ∩ Λ = {0}, then B(x0, ε) ∩ Λ = {x0}

for any x0 ∈ Λ.

3◦. Let Λ ⊂ R
d be a lattice and let B(x0, ρ) =

{
x : ‖x − x0‖ ≤ ρ

}
be a ball.

Prove that B ∩ Λ is a finite set.

4◦. Construct a subgroup Λ ⊂ R
m which is not discrete.

5. Let u1, . . . , ud ∈ R
d be linearly independent vectors. Let

Λ =
{
μ1u1 + . . .+ μdud : μi ∈ Z for i = 1, . . . , d

}
.

Prove that Λ is a lattice.

Hint: Construct an invertible linear transformation

T : Rd −→ R
d

such that T (Zd) = Λ. Then T−1 is an invertible linear transformation such that

T−1(Λ) = Z
d. In particular, T−1 is continuous.
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6. Check that Zd, Ad, Dn, D
+
n , E8, E7 and E6 are indeed lattices.

7◦. Draw pictures of D2 and A2.

8◦. Construct a basis of Zd.

9. Prove that

u1 = (2, 0, 0, 0, 0, 0, 0, 0), u2 = (−1, 1, 0, 0, 0, 0, 0, 0),

u3 = (0,−1, 1, 0, 0, 0, 0, 0), u4 = (0, 0,−1, 1, 0, 0, 0, 0),

u5 = (0, 0, 0,−1, 1, 0, 0, 0), u6 = (0, 0, 0, 0,−1, 1, 0, 0),

u7 = (0, 0, 0, 0, 0,−1, 1, 0) and u8 =
(1
2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2

)

is a basis of E8.

10◦. Let u1, . . . , ud be a basis of a lattice Λ ⊂ R
d. Let us choose a pair of indices

i �= j and let u′
i = ui + αuj , where α ∈ Z. Prove that u1, . . . , ui−1, u

′
i, ui+1, . . . , ud

is a basis of Λ.

11. A set S ⊂ R
d is called a semigroup provided x+y ∈ S for any two x, y ∈ S.

A set X ⊂ S is called a set of generators of S if and only if every s ∈ S can

be represented as a finite sum s =
∑

X μxx, where μx are non-negative integers.

Prove that every semigroup S ⊂ Z possesses a finite set of generators and construct

a semigroup S ⊂ Z
2 which does not have a finite set of generators.

Our first goal is to prove that every lattice has a basis. In fact, we will obtain the

stronger result that for any set of linearly independent lattice vectors b1, . . . , bd ∈ Λ

with d = rankΛ there is a basis u1, . . . , ud of Λ which is “reasonably close” to

b1, . . . , bd. To this end, let us invoke the distance function in R
d:

dist(x, y) = ‖x− y‖ for any two points x, y ∈ R
d

and let

dist(x,A) = inf
y∈A

dist(x, y) for a point x ∈ R
d and a set A ⊂ R

d.

First, we prove that given a subspace spanned by lattice points which does not

contain the entire lattice, there is a lattice point with the minimum possible positive

distance to the subspace. In fact, the exact structure of the distance function is

not important here. It could have come from any norm in R
d; see Section V.3.

We will use the following notation:

For a real number ξ, let �ξ� denote the largest integer not exceeding ξ and let

{ξ} = ξ − �ξ�, so 0 ≤ {ξ} < 1 for all ξ.

(1.3) Lemma. Let Λ ⊂ R
d be a lattice and let b1, . . . , bk ∈ Λ, k < d, be linearly

independent points. Let L = span
(
b1, . . . , bk). Then there exists a point v ∈ Λ \ L

and a point x ∈ L such that

dist(v, x) ≤ dist(w, y) for every w ∈ Λ \ L and every y ∈ L.

In words: among all lattice points not in L, there exists a point closest to L.
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Proof. Let Π be the parallelepiped spanned by b1, . . . , bk:

Π =
{ k∑

i=1

αibi : 0 ≤ αi ≤ 1 for i = 1, . . . , k
}
.

Then Π is a compact set. We claim that among all lattice points not in L, there is

a point v which is closest to Π.

Indeed, let us choose any a ∈ Λ \ L and let ρ = dist(a,Π) > 0. Let us consider

the ρ-neighborhood of Π:

Πρ =
{
x ∈ R

d : dist(x,Π) ≤ ρ
}
.

Then Πρ is a bounded set and since Λ is discrete, the intersection Πρ ∩ Λ is finite

(Problem 3, Section 1.2). Moreover, there are points in Πρ ∩ Λ which are not

contained in L (such is, for example, the point a).

Let us choose a lattice point v ∈ Πρ \ L which is closest to Π:

dist(v,Π) ≤ dist(w,Π) for every lattice point w ∈ Πρ \ L.

Let x ∈ Π be a point such that

dist(v, x) = dist(v,Π).

We claim that v and x satisfy the requirements of the lemma.

Indeed, let us choose any w ∈ Λ \ L and any y ∈ L. We can write

y =

k∑
i=1

γibi for some real γi.

We observe that

z =

k∑
i=1

�γi�bi and w − z

are lattice points, that w − z /∈ L and that

y − z =

k∑
i=1

{γi}bi

is a point from Π. Therefore,

dist(w, y) = dist
(
w − z, y − z

)
≥ dist

(
w − z, Π

)
≥ dist

(
v, Π
)
= dist(v, x)

and the result follows. �
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PROBLEMS.

1. Let Λ ⊂ R
d be a lattice, let b1, . . . , bk ∈ Λ, k < d+ 1, be lattice points and

let A be the affine hull of {b1, . . . , bk}. Prove that there is a lattice point with the

minimum possible positive distance to A.

2. Give an example of a straight line L ⊂ R
2 such that

inf
x∈Z2\L

dist(x, L) = 0.

3◦. Let Λ ⊂ R
d be a lattice, let u1, . . . , um ∈ Λ be lattice points and let

L = span
(
u1, . . . , um). Let us consider the orthogonal projection pr : Rd −→ L⊥

onto the orthogonal complement L⊥ of L. Prove that the image Λ1 = pr(Λ) is a

lattice in L⊥.

4◦. Let Λ ⊂ R
d be a lattice and let b1, . . . , bd ∈ Λ be linearly independent

lattice points. Let L0 = {0} and Lk = span
(
b1, . . . , bk

)
for k = 1, . . . , d. Prove

that for k = 1, . . . , d there exists a lattice point uk ∈ Lk \ Lk−1 closest to Lk−1.

Now we are ready to prove that every lattice of positive rank has a basis. In

fact, we prove a stronger result.

(1.4) Theorem. Let d > 0 and let Λ ⊂ R
d be a lattice. Let b1, . . . , bd ∈ Λ be

linearly independent lattice vectors. Let us define subspaces {0} = L0 ⊂ L1 ⊂ . . . ⊂
Ld ⊂ R

d by
Lk = span

(
b1, . . . , bk) for k = 1, . . . , d.

For k = 1, . . . , d let uk be a lattice point in Lk \ Lk−1 closest to Lk−1. Then
u1, . . . , ud is a basis of Λ. In particular, every lattice of positive rank has a basis.

Proof. First, we observe that by Problem 4 of Section 1.3 such points u1, . . . , ud

indeed exist. Let Λk = Λ ∩ Lk. We conclude that Λk is a lattice in Lk.

We prove by induction on k that u1, . . . , uk is a basis of Λk. For k = 1, we

have

u1 = α1b1 for some α1 �= 0.

Let v ∈ Λ1 \ {0} be a point. Then

v = βb1 for some β ∈ R.

We claim that μ = β/α1 is an integer. Otherwise, 0 < {μ} < 1 and the lattice

point

u′
1 = v − �μ�u1 = v − μu1 + {μ}u1 = {μ}u1 ∈ Λ1 \ {0}

is closer to the origin than u1, which is a contradiction. Thus v = μu1 for some

μ ∈ Z and hence u1 is a basis of Λ1.

Suppose that k > 1. For a point

x =

k∑
i=1

γibi, x ∈ Lk,
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we have

dist(x, Lk−1) = dist(γkbk, Lk−1) = |γk| dist(bk, Lk−1).

We have

uk =

k∑
i=1

αibi for some real αi such that αk �= 0.

Let v ∈ Λk be a point. Then

v =

k∑
i=1

βibi for some βi ∈ R.

We claim that μ = βk/αk is an integer. Otherwise, 0 < {μ} < 1 and the lattice

point

u′
k = v − �μ�uk = v − μuk + {μ}uk = {μ}αkbk +

k−1∑
i=1

(
βi − �μ�αki

)
bi

is a point from Λk \Λk−1 which is closer to Lk−1 than uk, which is a contradiction.

Thus μ ∈ Z and v − μuk ∈ Λk−1. Applying the induction hypothesis, we conclude

that v is an integer linear combination of u1, . . . , uk and the result follows. �

PROBLEMS.

1. Construct bases of An, Dn, D
+
n , E6 and E7 (see Example 1.2).

2◦. Let u1, . . . , ud be a basis of a lattice Λ ⊂ R
d, let Lk = span

(
u1, . . . , uk) for

k = 1, . . . , d and let L0 = {0}. Prove that

‖v‖ ≥ min
k=1,... ,d

dist(uk, Lk−1)

for every vector v ∈ Λ \ {0}.
3. Let Λ ⊂ R

2 be a lattice. Prove that there exists a basis u1, u2 of Λ such that

the angle between u1 and u2 is between 60◦ and 90◦.

Hint: Choose u1 to be a shortest non-zero lattice vector and u2 to be a shortest

lattice vector such that u1, u2 is a basis of Λ.

4. Let Λ ⊂ R
d be a lattice and let b1, . . . , bd ∈ Λ be linearly independent

vectors. Prove that there exists a basis u1, . . . , ud of Λ such that

uk =

k∑
i=1

αkibi where 0 ≤ αki ≤ 1 for i = 1, . . . , k

for k = 1, . . . , d.

5. Let Λ ⊂ R
d be a lattice and let b1, . . . , bd ∈ Λ be linearly independent

vectors. Prove that there exists a basis u1, . . . , ud of Λ such that

uk =

k∑
i=1

αkibi where 0 ≤ αkk ≤ 1 and |αik| ≤ 1/2 for i = 1, . . . , k − 1

for k = 1, . . . , d.

The following convex set plays a crucial role in what follows.

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



286 VII. Lattices and Convex Bodies

(1.5) Definition. Let Λ ⊂ R
d be a lattice and let u1, . . . , ud be a basis of Λ. The

set

Π =
{ d∑

i=1

αiui : 0 ≤ αi < 1 for i = 1, . . . d
}

is called the fundamental parallelepiped of the basis u1, . . . , ud and a fundamental
parallelepiped of the lattice Λ.

PROBLEM.

1◦. Prove that the fundamental parallelepiped is a convex bounded set.

2. The Determinant of a Lattice

We proceed to define an important metric invariant of a lattice.

(2.1) Lemma. Let Λ ⊂ R
d be a lattice and let Π be a fundamental parallelepiped

of Λ. Then, for each point x ∈ R
d there exist unique v ∈ Λ and y ∈ Π such that

x = v + y.

Proof. Suppose that Π is the fundamental parallelepiped of a basis u1, . . . , ud of

Λ. Then u1, . . . , ud is a basis of R
d and every point x can be written as x =

α1u1 + . . .+ αdud for some real α1, . . . , αd. Let

v =

d∑
i=1

�αi�ui and y =

d∑
i=1

{αi}ui,

where �·� is the integer part and {·} is the fractional part of a number. Clearly,

v ∈ Λ, y ∈ Π and x = v + y.

Suppose that there are two decompositions x = v1 + y1 and x = v2 + y2, where
v1, v2 ∈ Λ and

y1 =

d∑
i=1

αiui and y2 =

d∑
i=1

βiui, where 0 ≤ αi, βi < 1 for i = 1, . . . , d.

Then

v1 − v2 = y2 − y1 =

d∑
i=1

γiui, where γi = βi − αi.

We observe that |γi| < 1 for i = 1, . . . , d and that v1 − v2 ∈ Λ. Since u1, . . . , ud

is a basis of Λ, the numbers γi must be integers. Since |γi| < 1, we conclude that

γi = 0 and αi = βi for i = 1, . . . , d. Therefore, y2 = y1 and hence v2 = v1. �

(2.2) Corollary. Let Λ ⊂ R
d be a lattice and let Π be a fundamental parallelepiped

of Λ. Then the translates
{
Π + u : u ∈ Λ

}
cover the whole space R

d without
overlapping. �

Now we are ready to introduce the most important invariant of a lattice.
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(2.3) Theorem. Let Λ ⊂ R
d be a lattice. Then the volume of the fundamental par-

allelepiped of a basis of Λ does not depend on the basis. It is called the determinant
of Λ and denoted detΛ.

For ρ > 0 let B(ρ) =
{
x ∈ R

d : ‖x‖ ≤ ρ
}
be the ball of radius ρ centered at the

origin and let |B(ρ) ∩ Λ| be the number of lattice points in B(ρ). Then

lim
ρ−→+∞

volB(ρ)

|B(ρ) ∩ Λ| = detΛ.

In other words, det Λ can be interpreted as the “volume per lattice point”.

Proof. Let us choose a fundamental parallelepiped Π of Λ. The parallelepiped Π

is a bounded set (see Problem 1 of Section 1.5), so there is a γ such that Π ⊂ B(γ).
Let us choose a ρ > γ. Let us consider the union

X(ρ) =
⋃

u∈B(ρ)∩Λ

(Π + u).

�

X ( � )

B ( � )

0

Figure 80. A fundamental parallelepiped Π, a ball B(ρ) and the set

X(ρ)

By Corollary 2.2, the translates Π + u do not overlap, so

(2.3.1) volX(ρ) = |B(ρ) ∩ Λ| ·
(
volΠ
)

and
(
volΠ
)
=

volX(ρ)

|B(ρ) ∩ Λ| .

Since Π ⊂ B(γ), we have

(2.3.2) X(ρ) ⊂ B(ρ+ γ) and volX(ρ) ≤ volB(ρ+ γ).

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



288 VII. Lattices and Convex Bodies

Corollary 2.2 implies that for every x ∈ B(ρ − γ) there is a u ∈ Λ such that

x ∈ Π + u. Then we must have ‖x− u‖ ≤ γ and so u must be in B(ρ). Hence we

conclude that

(2.3.3) B(ρ− γ) ⊂ X(ρ) and volB(ρ− γ) ≤ volX(ρ).

Combining (2.3.1)–(2.3.3), we conclude that

(
volΠ
)
· volB(ρ)

volB(ρ− γ)
≥ volB(ρ)

|B(ρ) ∩ Λ| ≥
(
volΠ
)
· volB(ρ)

volB(ρ+ γ)
.

Since volB(ρ± γ) = (ρ± γ)d volB(1), we have

lim
ρ−→+∞

volB(ρ)

volB(ρ− γ)
= lim

ρ−→+∞
volB(ρ)

volB(ρ+ γ)
= 1,

which completes the proof. �

Lattices of determinant 1 are called unimodular.

PROBLEM.

1. Let u1, . . . , ud and v1, . . . , vd be two bases of a lattice Λ. Suppose that

ui =
∑d

j=1 αijvj and vi =
∑d

j=1 βijuj . Let A = (αij) and B = (βij) be the

d × d matrices composed of αij ’s and βij ’s correspondingly. Prove that A and

B are integer matrices and that AB = I is the identity matrix. Deduce that

| detA| = | detB| = 1. Give an alternative proof of the fact that the volume of a

fundamental parallelepiped does not depend on the basis.

(2.4) Definitions. Let Λ ⊂ R
d be a lattice. A lattice Λ0 ⊂ Λ is called a sublattice

of Λ. For x ∈ Λ the set x + Λ0 =
{
x + y : y ∈ Λ0

}
is called a coset of Λ modulo

Λ0. The set of all cosets is denoted Λ/Λ0. The number of cosets of Λ modulo Λ0 is

called the index of Λ0 in Λ and denoted |Λ/Λ0|.

PROBLEMS.

1◦. Prove that two cosets of Λ modulo Λ0 either coincide or do not intersect.

2. Let Λ ⊂ R
d be a lattice and let Λ0 ⊂ Λ be a sublattice. Prove that there

exist a basis u1, . . . , ud of Λ and a basis v1, . . . , vd of Λ0 such that vi = λiui for

some positive integers λi for i = 1, . . . , d, where λi divides λi+1 for i = 1, . . . , d−1.

Hint: With a basis U =
(
u1, . . . , ud

)
of Λ and a basis V =

(
v1, . . . , , vd

)
of Λ0,

let us associate an integer d× d matrix A = AU,V , where A =
(
αij

)
and

vi =

d∑
j=1

αijuj for i = 1, . . . , d.

Let us choose a pair U, V of bases such that α11 > 0 and the value of α11 is the

smallest possible among all pairs U, V with positive α11. Prove that all other entries

αij must be divisible by α11. Modify the bases so that α1j = 0 and αi1 = 0 for all

i, j = 2, . . . , d. Repeat the same argument with α22, . . . , αdd.
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(2.5) Theorem. Let Λ ⊂ R
d be a lattice and let Λ0 ⊂ Λ be a sublattice. Let Π0

be a fundamental parallelepiped of Λ0. Then

|Λ/Λ0| = |Π0 ∩ Λ| = detΛ0

detΛ
.

In particular, the number of points from Λ in a fundamental parallelepiped of Λ0

does not depend on the parallelepiped.

Proof. By Lemma 2.1, for every x ∈ Λ there is unique representation x = v + y,
where v ∈ Λ0 and and y ∈ Π0. Since x ∈ Λ and v ∈ Λ, we conclude that y ∈ Λ.

Hence the points of Π0 ∩ Λ are the coset representatives of Λ/Λ0, so |Λ/Λ0| =

|Π0 ∩ Λ|. In particular, we conclude that |Λ/Λ0| is finite.
Let B(ρ) =

{
x ∈ R

d : ‖x‖ ≤ ρ
}
be the ball of radius ρ. From Theorem 2.3,

lim
ρ−→+∞

|B(ρ) ∩ Λ|
volB(ρ)

=
1

detΛ
and lim

ρ−→+∞
|B(ρ) ∩ Λ0|
volB(ρ)

=
1

detΛ0
.

We claim that for any x ∈ R
d,

lim
ρ−→+∞

|B(ρ) ∩ (Λ0 + x)|
volB(ρ)

=
1

detΛ0
.

Indeed, let B(−x, ρ) be the ball of radius ρ centered at −x. Then B(ρ)∩ (Λ0+x) =
B(−x, ρ) ∩ Λ0. Since B(0, ρ − ‖x‖) ⊂ B(−x, ρ) ⊂ B(0, ρ + ‖x‖), we obtain the

desired limit as in the proof of Theorem 2.3. Since Λ =
⋃

x∈Π0
(x + Λ0) and the

cosets do not intersect (cf. Problem 1, Section 2.4), we have

|B(ρ) ∩ Λ| =
∑

x∈Π0∩Λ

|B(ρ) ∩ (Λ0 + x)|.

Summarizing,

1

detΛ
=

|Π0 ∩ Λ|
det Λ0

and |Λ/Λ0| =
detΛ0

det Λ
,

which completes the proof. �

(2.6) Corollary. Let u1, . . . , ud ∈ Z
d be linearly independent vectors. Then the

number of integer points in the “semi-open” parallelepiped

Π =
{ d∑

i=1

αiui : 0 ≤ αi < 1 for i = 1, . . . , d
}

is equal to the volume of Π, that is, the absolute value of the determinant of the
matrix with the columns u1, . . . , ud.
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Proof. Let Λ0 be the lattice with the basis u1, . . . , ud (cf. Problem 5, Section 1.2).

The proof follows by Theorem 2.5 since detZd = 1. �

(3, 1)

(2, 3)

0

Figure 81. Example: the parallelepiped spanned by (3, 1) and (2, 3)

contains
���det

�
3 2

1 3

� ��� = 7 integer points.

PROBLEMS.

1◦. Prove that detZd = 1, detDn = 2 and detD+
n = 1 (cf. Examples 1.2.1,

1.2.3 and 1.2.4).

2. Prove that detAn =
√
n+ 1 (cf. Example 1.2.2).

3. Prove that detE7 =
√
2 (cf. Example 1.2.5) and that detE6 =

√
3 (cf.

Example 1.2.6).

4. Let α1, . . . , αd+1 be a set of coprime integers and let us identify R
d with the

hyperplane H =
{
(ξ1, . . . , ξd+1) : α1ξ1+. . .+αd+1ξd+1 = 0

}
. Let Λ = H∩Zd+1 be

a set in H = R
d. Prove that Λ is a lattice in H and that detΛ =

√
α2
1 + . . .+ α2

d+1.

Hint: Let a = (α1, . . . , αd+1) ∈ Z
d+1 and let n = α2

1 + . . . + α2
d+1. Consider

the lattice Λ1 ⊂ R
d+1,

Λ1 =
{
x ∈ Z

d : α1ξ1 + . . .+ αd+1ξd+1 ≡ 0 mod n
}
.

Prove that |Zd+1/Λ1| = n and use the fact that if u1, . . . , ud is a basis of Λ, then

u1, . . . , ud, a is a basis of Λ1.

5◦. Let Λ ⊂ R
d be a lattice and let u1, . . . , ud be a set of vectors from Λ such

that the volume of the parallelepiped

{
α1u1 + . . .+ αdud, 0 ≤ αi ≤ 1 for i = 1, . . . , d

}
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is equal to detΛ. Prove that u1, . . . , ud is a basis of Λ.

6. The convex hull of finitely many points in Z
2 is called an integer polygon.

Following the steps below, prove Pick’s Formula: the number of integer points in

an integer polygon with a non-empty interior is equal to the area of the polygon

plus half of the number of integer points on the boundary plus 1.

Figure 82. Example: area = 10.5, number of integer points = 15,

number of integer points on the boundary = 7; Pick’s Formula: 15 =

10.5 + 7/2 + 1

a) Let a, b ∈ Z
2 be linearly independent vectors and let c = a + b. Prove that

the number of integer points in the triangle conv(0, a, b) is equal to the number of

integer points in the triangle conv(a, b, c).

Hint: Consider the transformation x �−→ c− x.

b) Using Corollary 2.6 and part a), prove Pick’s Formula for integer triangles.

c) Prove Pick’s Formula in whole generality using part b) and the induction on

the number of vertices of the polygon.

7. Prove that linear independent vectors u, v ∈ Z
2 constitute a basis of Z2 if

and only if the triangle conv(0, u, v) contains no integer points other than 0, u and

v.

8. Construct an example of linearly independent vectors u, v, w ∈ Z
3 such that

conv(0, u, v, w) contains no integer points other than 0, u, v, w but u, v, w is not a

basis of Z3.

9. Let A ⊂ R
d be a compact convex set. For a point a ∈ A, let us define the

solid angle φ(A, a) of A at a by

φ(A, a) = lim
ε−→0

vol
(
A ∩B(a, ε)

)
volB(a, ε)

.
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Let

Φ(A) =
∑
a∈Zd

φ(A, a).

1 / 8 1 / 2 1 / 2 1 / 4

1 / 2

1 / 2

1 / 8

1 / 2 1

1/ 2

0

A

Figure 83. Example: Φ(A) = 1 + 6(1/2) + 2(1/8) + 1/4 = 4.5

a) Let A be an integer polygon (see Problem 6 above). Show that Pick’s

Formula is equivalent to the identity Φ(A) = area of A.

b) Prove that Φ gives rise to a valuation (see Section I.7): if A1, . . . , Am ⊂ R
d

are compact convex sets and α1, . . . , αm are real numbers, then

m∑
i=1

αi[Ai] = 0 implies

m∑
i=1

αiΦ(Ai) = 0.

Prove further that Φ(A + u) = Φ(A) for all u ∈ Z
d and that if dimA < d, then

Φ(A) = 0.

c) Let u1, . . . , ud ∈ Z
d be linearly independent vectors and let

A =
{ d∑

i=1

αiui : 0 ≤ αi ≤ 1 for i = 1, . . . d
}

be the parallelepiped spanned by u1, . . . , ud. Prove that Φ(A+ x) = volA for any

vector x ∈ R
d.

d∗) Let Ii = [ui, vi], ui, vi ∈ Z
d for i = 1, . . . ,m be a collection of intervals.

Let A = I1+ . . .+ Im (such a set A is called a zonotope). Prove that Φ(A) = volA.

Hint: Show that A can be dissected into a union of parallelepipeds and use

Parts b) and c) above.

e) Let A ⊂ R
d be a polytope and let Λ ⊂ Z

d be a lattice such that

R
d =
⋃
u∈Λ

(
A+ u

)
and int(A+ u1) ∩ int(A+ u2) = ∅ for distinct u1, u2 ∈ Λ. Prove

that Φ(A) = volA.
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f∗) Let A ⊂ R
d be a polytope with integer vertices. Suppose that for every

facet F of P there is a point uF ∈ F such that 2uF − F = F (in other words, each

facet F has a center of symmetry). Prove that Φ(A) = volA.

g∗) Let A ⊂ R
d be a polytope with integer vertices. Prove that for some

α0(A), . . . , αd(A)

Φ(mA) =

d∑
k=0

αk(A)mk and all positive integers m.

Prove that αd(A) = volA, α0 = 0 and αk = 0 if d− k is odd.

Remark: See [BP99].

3. Minkowski’s Convex Body Theorem

In this section, we prove one of the most elegant and powerful results in convexity,

Minkowski’s Convex Body Theorem. It stands along with Helly’s Theorem (The-

orem I.4.2) as one of the most glorious results in finite-dimensional convexity. We

start with a result of H.F. Blichfeldt (1914), which states that a set of a sufficiently

large volume contains two points that differ by a non-zero lattice point.

(3.1) Blichfeldt’s Theorem. Let Λ ⊂ R
d be a lattice and let X ⊂ R

d be a
(Lebesgue measurable) set such that volX > det Λ. Then there exist two points
x �= y ∈ X such that x− y ∈ Λ.

Proof. Let Π be a fundamental parallelepiped of Λ. For every lattice point u ∈ Λ

let us define a set Xu ⊂ Π as follows:

Xu =
{
y ∈ Π : y + u ∈ X

}
, that is, Xu =

(
(Π + u) ∩X

)
− u;

cf. Figure 84. Corollary 2.2 implies that the translates Xu + u cover X without

overlapping. Hence

∑
u∈Λ

volXu = volX > volΠ = detΛ.

We claim that some two subsets Xu and Xv have a non-empty intersection for some

lattice points u �= v. Indeed, let [Xu] be the indicator function of Xu (see Definition

I.7.1) and let

f =
∑
u∈Λ

[Xu].

Then ∫

Π

f dx =
∑
u∈Λ

∫

Π

[Xu] dx =
∑
u∈Λ

volXu > volΠ.
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�

X

Xu

u

Figure 84. A set X, a fundamental parallelepiped Π, a lattice vector

u and the set Xu

Therefore, for some x ∈ Π we have f(x) > 1, so f(x) ≥ 2 and henceXu∩Xv �= ∅
for some u �= v. Let z ∈ Xu ∩Xv. Then z + u = x ∈ X and z + v = y ∈ X. We

observe that x− y = u− v ∈ Λ and the result follows. �

There are numerous extensions of Blichfeldt’s Theorem. Some of them are

presented below.

PROBLEMS.

1. Suppose that volX = detΛ and X is compact. Prove that there exist two

points x �= y ∈ X such that x− y is a lattice point.

2. Suppose that volX > m detΛ or volX = m detΛ and X is compact, where

m is a positive integer. Prove that there exist m+1 distinct points x1, . . . , xm+1 ∈
X such that xi − xj ∈ Λ for all i and j.

3. Let f be a non-negative integrable function on R
d and let Λ ⊂ R

d be a

lattice. Prove that there exists a point z ∈ R
d such that

∑
u∈Λ

f(u+ z) ≥ 1

detΛ

∫

Rd

f(x) dx.

Now we are ready to prove Minkowski’s Theorem.

(3.2) Minkowski’s Convex Body Theorem. Let Λ ⊂ R
d be a lattice and let

A ⊂ R
d be a convex set such that volA > 2d det Λ and A is symmetric about the

origin. Then A contains a non-zero lattice point u. Furthermore, if A is compact,
then the inequality volA > 2d det Λ can be relaxed to volA ≥ 2d det Λ.
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3. Minkowski’s Convex Body Theorem 295

Proof. Let

X =
1

2
A =
{1
2
x : x ∈ A

}
.

Then volX = 2−d volA > detΛ. Therefore, by Theorem 3.1, there exists a pair

x, y ∈ X such that x− y = u is a non-zero lattice vector. Now 2x, 2y ∈ A and since

A is symmetric about the origin, −2y ∈ A. Then, since A is convex,

u = x− y =
1

2
(2x) +

1

2
(−2y) ∈ A.

Hence A contains a non-zero lattice point u.

Suppose now that A is compact and that volA = 2d detΛ. Then for any

1 < ρ < 2 and ρA =
{
ρx : x ∈ A

}
we have vol(ρA) = ρd(volA) > 2d detΛ, so there

is a non-zero lattice point uρ ∈ ρA. Since A is compact, the family {uρ} has a limit

point, which has to be a non-zero lattice point from A. �

PROBLEMS.

1◦. Construct an example of a convex symmetric non-compact set A ⊂ R
d,

such that volA = 2d but A does not contain a non-zero point from Z
d.

2◦. Construct an example of a convex (but not symmetric) set A ⊂ R
2 of an

arbitrarily large volume such that A ∩ Z
2 = ∅.

3. Let Λ ⊂ R
d be a lattice and let A ⊂ R

d be a centrally symmetric convex set

with volA > m2n detΛ for some positive integer m. Prove that A contains at least

m pairs of non-zero lattice points ui,−ui : i = 1, . . . ,m.

4 (K. Mahler). Let A ⊂ R
d be a convex body containing the origin as its

interior point. Suppose that for some σ > 0 we have −σx ∈ A for all x ∈ A. Prove

that if volA > (1 + σ−1)d detΛ, then A contains a non-zero lattice point u.

5∗ (D.B. Sawyer). Show that the inequality of Problem 4 can be relaxed to

volA > (1 + σ−1)d(1− (1− σ)d) detΛ.

6∗ (E. Ehrhart). Prove that if A ⊂ R
2 is a compact convex set whose center of

gravity coincides with the origin and volA > 9
2 detΛ, then A contains a non-zero

lattice point.

7. Prove the following version of the Minkowski Theorem, suggested by C.L.

Siegel. Let A ⊂ R
d be a compact centrally symmetric convex body which does not

contain a non-zero point from Z
d. Then

2d = volA+ 4d
(
volA
)−1 ∑

u∈Zd\{0}

∣∣∣
∫

1
2A

exp{−2πi〈u, x〉} dx
∣∣∣
2

.

Hint: Let

φ(x) =
∑
u∈Zd

[u+ (1/2)A],

where [X] is the indicator function of the set X ⊂ R
d; see Definition I.7.1. Then φ

is a periodic function on R
d and we may apply Parseval’s Formula to φ.
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8∗. Prove the following Minkowski Extremal Convex Body Theorem. Let K ⊂
R

d be a convex body symmetric about the origin such that volK = 2d detΛ and

such that (intK) ∩ Λ = {0}. Prove that K is a polytope with at most 2(2d − 1)

facets.

Hint: Through every non-zero lattice point u, let us draw an affine hyperplane

Hu isolating K in such a way that Hu and H−u are parallel. Let H+
u be the closed

halfspace containing K. Let

P =
⋂

u∈Λ\{0}
H+

u .

Then P is a symmetric convex body containing K and not containing any non-

zero lattice point. We must have volP = 2d det Λ and hence P = K. Show

that the halfspaces H+
u which correspond to “far away” lattice points u can be

discarded. Deduce that P = K is a polyhedron. Show that each facet of K
must contain a lattice point in its interior (otherwise, we could increase K). Let

Λ0 = 2Λ =
{
2u : u ∈ Λ

}
be a sublattice of Λ. Prove that |Λ/Λ0| = 2d. Argue that

if the number of facets is greater than 2(2d−1), then there is a pair of lattice points

x �= −y in different facets of K such that x − y ∈ Λ0. Show that z = (x − y)/2
would have been an interior point of K.

9. Let Λ ⊂ R
d be a lattice. Let

K =
{
x ∈ R

d : dist(x, 0) ≤ dist(x, u) for all u ∈ Λ
}
.

Prove that K is a convex body and that volK = detΛ. Prove that int(2K) ∩ Λ =

{0}. Deduce from Problem 8 that K is a polytope.

10. Let Λ = D4 (see Example 1.2.3) and letK ⊂ R
4 be the polytope of Problem

9 above. Prove that up to a change in the coordinates, K is the 24-cell of Problem

6, Section IV.1.3.

11. Let Λ ⊂ R
d be a lattice and let A ⊂ R

d be a convex d-dimensional set

symmetric about the origin. Let us define successive minima λ1, . . . , λd by

λk = inf
{
τ > 0 : dim span

(
τA ∩ Λ

)
= k
}
.

a◦) Check that λ1 ≤ λ2 ≤ . . . ≤ λd.

b) Check that Minkowski’s Convex Body Theorem is equivalent to the inequal-

ity λd
1 vol(A) ≤ 2d detΛ.

c∗) Prove Minkowski’s Second Theorem: λ1 · · ·λd vol(A) ≤ 2d detΛ.

Hint: To describe the idea of a possible approach, let us first sketch a slightly

different proof of Theorem 3.2 in the case of Λ = Z
d. Let X ⊂ R

d be a (Jordan

measurable or otherwise “nice”) set and let us consider the map Φ : X −→ [0, 1)d,
(ξ1, . . . , ξd) �−→ ({ξ1}, . . . , {ξd}), where {ξ} is the fractional part of ξ. Prove that

Φ preserves volume locally. Deduce that if Φ is injective, then vol Φ(X) = volX.

Deduce that if volX > 1, then X −X contains a non-zero lattice point.

Now, let us refine the above reasoning. First, show that it suffices to prove

Minkowski’s Second Theorem in the case of Λ = Z
d. Then show that by changing
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the coordinates, if necessary, we may assume that for any k and for any τ < λk,

non-zero coordinates of the points in τA ∩ Z
d are permitted in the first k − 1

positions only. Let X = (1/2)A. Taking one fractional part at a time, prove that

vol
(
Φ(λdX)

)
= λ1 · · ·λd volX. Deduce Minkowski’s Second Theorem from there.

12. Let Λ ⊂ R
d be a lattice and let p : Rd −→ R be a norm; see Section V.3.

Let Kp =
{
x ∈ R

d : p(x) ≤ 1
}
. Deduce from Problem 11, c) above and Problem 5

of Section 1.4 that there is a basis u1, . . . , ud of Λ such that

vol(Kp)

d∏
i=1

p(ui) ≤ (d+ 1)! detΛ.

Remark: General references for Problems 3–9 and 11–12 are [C97] and [GL87].

Before we proceed with applications of Minkowski’s Theorem, we need to do

some volume computations.

The volume of the unit ball in R
d. Let B(ρ) =

{
x ∈ R

d : ‖x‖ ≤ ρ
}
be the

ball of radius ρ > 0 and let Sd−1(ρ) =
{
x ∈ R

d : ‖x‖ = ρ
}
be the sphere of radius

ρ > 0.

We will use the integral

∫ +∞

−∞
e−ξ2 dξ =

√
π;

cf. Section V.5.1.

(3.3) Definition. The Gamma function is defined by the formula

Γ(x) =

∫ +∞

0

tx−1e−t dt for x > 0.

We recall (without proof) Stirling’s Formula:

Γ(x+ 1) =
√
2πx
(x
e

)x(
1 +O
(
x−1
))

as x −→ +∞.

PROBLEMS.

1. Prove that Γ(x+ 1) = xΓ(x).

2. Prove that Γ(x) = (x− 1)! for positive integers x.

3. Prove that Γ(1/2) =
√
π.

(3.4) Lemma. Let βd be the volume of the unit ball B =
{
x ∈ R

d : ‖x‖ ≤ 1
}
.

Then

βd =
πd/2

Γ(d/2 + 1)
.
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Proof. Let κd−1 be the surface area of the unit sphere Sd−1 =
{
x ∈ R

d : ‖x‖ = 1
}

and let

S
d−1(ρ) =

{
x ∈ R

d : ‖x‖ = ρ
}

denote the sphere of radius ρ.

Since ‖x‖2 = ξ21 + . . .+ ξ2d, we have

∫

Rd

e−‖x‖2

dx =
(∫ +∞

−∞
e−ξ2 dξ

)d
= πd/2.

Using polar coordinates, we can write

πd/2 =

∫

Rd

e−‖x‖2

dx =

∫ +∞

0

e−ρ2

vold−1 S
d−1(ρ) dρ = κd−1

∫ +∞

0

ρd−1e−ρ2

dρ.

Substituting τ = ρ2 in the last integral, we get

πd/2 =
κd−1

2

∫ +∞

0

τ (d−2)/2e−τ dτ =
κd−1

2
Γ(d/2).

Therefore,

κd−1 =
2πd/2

Γ(d/2)
.

Now,

βd =

∫ 1

0

vold−1 S
d−1(ρ) dρ = κd−1

∫ 1

0

ρd−1 dρ =
κd−1

d
=

πd/2

Γ(d/2 + 1)
.

�

PROBLEM.

1◦. Compute β1, β2, β3 and β4.

4. Applications: Sums of Squares and Rational

Approximations

In this section, we discuss some applications of Minkowski’s Convex Body Theorem

(Theorem 3.2). Our first goal is to give a proof of Lagrange’s result that every

positive integer is a sum of four squares of integers. We start with a simple lemma.

(4.1) Lemma. Let c1, . . . , cm ∈ Z
d be integral vectors and let γ1, . . . , γm be posi-

tive integers. Let

Λ =
{
x ∈ Z

d : 〈ci, x〉 ≡ 0 mod γi for i = 1, . . . ,m
}
.

Then Λ is a lattice and detΛ ≤ γ1 · · · γm.
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Proof. Obviously, Λ is a discrete subgroup of Rd. Since Λ contains (γ1 · · · γm)Zd,

we conclude that Λ is a lattice. Let us construct the coset representatives of Zd/Λ.
For an m-tuple of numbers b = (β1, . . . , βm), where 0 ≤ βi < γi, let xb ∈ Z

d be a

lattice point, if one exists, such that 〈ci, xb〉 ≡ βi mod γi for i = 1, . . . ,m. Thus

for every x ∈ Z
d there is unique xb ∈ Z

d such that

〈ci, x〉 ≡ 〈ci, xb〉 mod γi for i = 1, . . . ,m.

Therefore, Zd =
⋃
b

(
xb +Λ) and hence xb are the coset representatives of Zd/Λ. It

follows that the number of possible xb’s does not exceed the product γ1 · · · γm. By

Theorem 2.5, detΛ = |Zd/Λ| detZd = |Zd/Λ| ≤ γ1 · · · γm and the proof follows.

�

PROBLEM.

1◦. Let ξ1, ξ2, ξ3, ξ4 and η1, η2, η3, η4 be numbers. Let

ζ1 = ξ1η1 − ξ2η2 − ξ3η3 − ξ4η4, ζ2 = ξ1η1 + ξ2η1 + ξ3η4 − ξ4η3,

ζ3 = ξ1η3 − ξ2η4 + ξ3η1 + ξ4η2 and ζ4 = ξ1η4 + ξ2η3 − ξ3η2 + ξ4η1.

Check that

(ξ21 + ξ22 + ξ23 + ξ24)(η
2
1 + η22 + η23 + η24) = ζ21 + ζ22 + ζ23 + ζ24 .

In particular, the product of two sums of four squares of integers is a sum of four

squares of integers.

(4.2) Lagrange’s Theorem. Every positive integer number n can be represented
as a sum n = ξ21 + ξ22 + ξ23 + ξ24 , where ξ1, ξ2, ξ3 and ξ4 are integers.

Proof. Problem 1 of Section 4.1 implies that the product of sums of four squares

of integers is a sum of four squares of integers. Since every integer is a product of

primes, it suffices to prove the result assuming that n is a prime number. Assuming

that n is prime, let us show there are numbers α and β such that

α2 + β2 + 1 ≡ 0 mod n.

Indeed, if n = 2 we take α = 1 and β = 0. If n is odd, then all the (n + 1)/2
numbers α2 : 0 ≤ α < n/2 have distinct residues mod n. To see this, assume that

α2
1 ≡ α2

2 mod n for some 0 ≤ α1, α2 < n/2. Then (α1 − α2)(α1 + α2) ≡ 0 mod n.
On the other hand, 0 < α1 + α2 < n and since n is prime, we must have α1 = α2.

Similarly, the (n+1)/2 numbers −1−β2 : 0 ≤ β < n/2 have distinct residues mod

n. Therefore there is a pair α, β such that α2 = −1 − β2 mod n, or, equivalently,
α2 + β2 + 1 ≡ 0 mod n.

Let us consider the lattice

Λ =
{
(ξ1, ξ2, ξ3, ξ4) ∈ Z

4 : ξ1 ≡ αξ3 + βξ4 mod n and

ξ2 = βξ3 − αξ4 mod n
}
.
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Lemma 4.1 implies that Λ is a lattice and that detΛ ≤ n2. Let us consider an open

ball of radius 2n:

B =
{
(ξ1, ξ2, ξ3, ξ4) ∈ R

4 : ξ21 + ξ22 + ξ23 + ξ24 < 2n
}
.

From Lemma 3.4, we have

volB = 2n2π2 > 16n2 ≥ 24 det Λ.

Therefore, by Theorem 3.2, there is a point x = (ξ1, ξ2, ξ3, ξ4) ∈ Λ such that

0 < ξ21 + ξ22 + ξ23 + ξ24 < 2n. On the other hand, since x ∈ Λ, we get that

ξ21 + ξ22 + ξ23 + ξ24 ≡ (α2 + β2 + 1)ξ23 + (α2 + β2 + 1)ξ24 ≡ 0 mod n.

Therefore, ξ21 + ξ22 + ξ23 + ξ24 is divisible by n and since 0 < ξ21 + ξ22 + ξ23 + ξ24 < 2n,
we must have ξ21 + ξ22 + ξ23 + ξ24 = n. �

This proof is due to H. Davenport.

PROBLEMS.

1◦. Give an example of a positive integer that cannot be represented as a sum

of three squares of integers.

2. Let k be a positive integer. Prove that if there is a solution to the congruence

ξ2 +1 ≡ 0 mod k, then k is the sum of two squares of integers. Deduce that every

prime number p ≡ 1 mod 4 is the sum of two squares of integers.

3∗. Prove that the number of integral solutions of the equation ξ21+ξ22+ξ23+ξ24 =

n is 8 times the sum of all d such that d divides n and 4 does not divide d (Jacobi’s

Formula).

Remark: For a short proof, see [AEZ93].

Next, we consider how to approximate a given real number by a rational num-

ber. Obviously, given a real number α and a positive integer q, we can approximate

α by a rational number p/q so that |α−p/q| ≤ 1/2q. It turns out, we can do better.

(4.3) Theorem. There exists a constant 0 < C < 1 such that for any α ∈ R one
can find an arbitrarily large positive integer q and an integer p such that

∣∣∣α− p

q

∣∣∣ ≤ C

q2
.

Proof. Without loss of generality, we may assume that α is irrational. Let us

choose a positive integer Q > 2 and consider the set A ⊂ R
2:

A =
{
(x, y) : |αx− y| ≤ 1

Q
, |x| ≤ Q

}
.
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x

y

A

0

y = � x

q

p

Figure 85

Then A is a compact convex centrally symmetric set (parallelogram). Further-

more, volA = 4. Therefore, by Theorem 3.2, there is a non-zero integer point

(q, p) ∈ A. We observe that q �= 0 since otherwise p = 0. Because of the symmetry,

we may assume that q > 0. It now follows that

(4.3.1)

∣∣∣α− p

q

∣∣∣ ≤ 1

qQ
and 0 < q ≤ Q.

The inequalities (4.3.1) imply that

(4.3.2)

∣∣∣α− p

q

∣∣∣ ≤ 1

q2
.

Our goal is to establish that q can be made arbitrarily large in (4.3.2). Indeed,

let M be a natural number. Since α is irrational, we can choose Q in (4.3.1) so

big that the inequality (4.3.1) is not satisfied for any 1 < q < M (since there

are finitely many possibilities to approximate a number within a given error by a

fraction whose denominator does not exceedM and not a single such approximation

will be precise). Therefore, (4.3.1) and thus (4.3.2) are satisfied with some q > M .

�
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The construction used in the proof of Theorem 4.3 does not provide the best

way to get a rational approximation of a given real number. It is known that the

best value of C is C = 1/
√
5 (one can take α = (

√
5− 1)/2), whereas the proof of

Theorem 4.3 gives us only that C ≤ 1. A better method of rational approximation

is via continued fractions which are not discussed here (see [Kh97]). However, in

the case of a simultaneous approximation (see Problem 1 below), the approach via

Minkowski’s Theorem turns out to be quite useful.

PROBLEM.

1. Prove that there exists C > 0 such that for any real numbers α1, . . . , αn one

can find an arbitrarily large positive integer q and integers p1, . . . , pn such that

∣∣∣αi −
pi
q

∣∣∣ ≤ C

q1+
1
n

for i = 1, . . . , n.

5. Sphere Packings

In this section, we discuss the notion of the packing density which is closely related

to Blichfeldt’s and Minkowski’s Theorems (Theorems 3.1 and 3.2).

(5.1) Definitions. For a number ρ > 0 and a point x0 ∈ R
d let B(x0, ρ) =

{
x ∈

R
d : ‖x − x0‖ < ρ

}
denote the open ball of radius ρ centered at x0. Let Λ ⊂ R

d

be a lattice. The packing radius of Λ is the largest ρ > 0 such that the open

balls B(x, ρ) and B(y, ρ) do not intersect for any two distinct points x, y ∈ Λ. Let

X =
⋃

x∈Λ B(x, ρ) be the part of the space R
d covered by the balls centered at the

lattice points, where ρ is the packing radius.

The packing density of Λ is the number

σ(Λ) = lim
τ−→+∞

vol
(
X ∩B(0, τ )

)

volB(0, τ )
.

In other words, σ(Λ) is the “fraction” of the space Rd filled by the largest congruent

non-overlapping balls centered at the lattice points.

It has been known for some time that some lattice packings utilize space better

(that is, have a higher packing density) than others; see Figure 86.

PROBLEMS.

1◦. Show that the packing radius exists and that it is equal to one half of the

minimum length of a non-zero vector from Λ.

2◦. Show that the packing density exists and that it is equal to

βdρ
d

det Λ
=

πd/2ρd

Γ(d/2 + 1) detΛ
,

where ρ is the packing radius and βd is the volume of the unit ball in R
d; see Lemma

3.4.
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3◦. Explain why the Minkowski Convex Body Theorem (Theorem 3.2) for a

ball centered at the origin is equivalent to the statement that the packing density

σ(Λ) of any lattice Λ does not exceed 1.

Lattices Λ1 and Λ2 in R
d are called similar (denoted Λ1 ∼ Λ2) if one can be

obtained from another by a composition of an orthogonal transformation of Rd and

a dilation x �−→ αx, α �= 0.

4. Prove that the packing densities of similar lattices are equal.

5. Prove that D2 ∼ Z
2, D3 ∼ A3, and D+

4 ∼ Z
4 (cf. Example 1.2).

6. Prove the following identities for the packing radii:

ρ(Zd) =
1

2
, ρ(An) = ρ(Dn) =

√
2

2
for n ≥ 2,

ρ(D+
n ) =

√
2

2
for n ≥ 8,

ρ(D+
2 ) =

1

2
√
2
, ρ(D+

4 ) =
1

2
, ρ(D6) =

√
3

8
and

ρ(E6) = ρ(E7) =

√
2

2
.

(cf. Example 1.2).

Figure 86. The Z
2 packing and the A2 packing of discs in R

2. The

latter has a higher packing density.

7. Prove the following identities for the packing densities

σ(Z) = 1, σ(A2) =
π√
12

≈ 0.9069, σ(A3) =
π√
18

≈ 0.7405,

σ(D4) =
π2

16
≈ 0.6169, σ(D5) =

π2

15
√
2
≈ 0.4653, σ(E6) =

π3

48
√
3
≈ 0.3729,

σ(E7) =
π3

105
≈ 0.2953 and σ(E8) =

π4

384
≈ 0.2537
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(cf. Examples 1.2).

8. Let K ⊂ R
d be a compact convex set with non-empty interior. The kissing

number of K is the maximum number of congruent copies of K that can touch

K without any two overlapping. Using lattices A2, A3, D4 and E8, prove that the

kissing number of a ball in R
d is at least 6 for d = 2, at least 12 for d = 3, at least

24 for d = 4 and at least 240 for d = 8.

9∗. Prove that for every dimension d there exists a lattice Λ ⊂ R
d with the

largest possible packing density among all lattices of rank d.

(5.2) Packing densities and signal transmission. Suppose we want to trans-

mit a signal which we interpret as a d-tuple of numbers (ξ1, . . . , ξd). Hence the space

R
d is interpreted as the space of all signals. If we want to transmit information,

some signals may serve as codes of transmitted symbols.

Realistically, we can expect that every transmitted signal gets somewhat dis-

torted. Then to decode a signal, we need to “round” it to a code, hence there is

some error bound ρ > 0, such that within the distance less than ρ of the signal

there is at most one code and that code can be found more or less efficiently.

If the codes form a lattice in R
d, then ρ is the packing radius and the packing

density σ is the “percentage” of all signals that can be decoded. Naturally, we

would like to make σ as big as possible. Of course, there are other circumstances

which we would like to take into account. For example, we want to make decoding,

that is, finding a lattice point closest to a given signal, as simple as possible.

PROBLEMS.

1. Prove the following inequalities for packing densities:

σ(A2) > σ(Z2),

σ(A3) > σ(Z3),

σ(D4) > σ(A4) > σ(Z4),

σ(D5) > σ(A5) > σ(Z5),

σ(E6) > σ(D6) > σ(A6) > σ(Z6),

σ(E7) > σ(D7) > σ(A7) > σ(Z7),

σ(E8) > σ(D8) > σ(A8) > σ(Z8).

2. Construct an efficient algorithm of rounding a point x ∈ R
4 to the nearest

point of D4.

3. Construct an efficient algorithm of rounding a point x ∈ R
8 to the nearest

point of E8.

Minkowski’s Theorem results in the following general estimates.

(5.3) Corollary. Let Λ ⊂ R
d be a lattice. Then for the packing radius ρ(Λ) we

have

ρ(Λ) ≤ Γ1/d(d/2 + 1)√
π

(
det Λ
)1/d

=

√
d

2πe

(
1 +O(1/d)

)(
det Λ
)1/d

.
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6. The Minkowski-Hlawka Theorem 305

Proof. By Problem 1, Section 5.1, it follows that for ρ = ρ(Λ) the ballB(0, 2ρ) does
not contain lattice points in its interior. The proof now follows by the Minkowski

Theorem (Theorem 3.2), the formula for the volume of a ball (Lemma 3.4) and

Stirling’s Formula Γ(x+ 1) =
√
2πx(x/e)x(1 +O(1/x)). �

The inequality of Corollary 5.3 is exactly equivalent to the statement that the

packing density of any lattice does not exceed 1. It seems obvious intuitively (and

is indeed true) that the packing density of any d-dimensional lattice is strictly less

than 1 for any d > 1 and that the density approaches zero as the dimension d grows.

Thus, Minkowski’s Convex Body Theorem (Theorem 3.2) is not optimal for a ball.

In fact, the lattices Z, A2, A3 ∼ D3, D4, D5, E6, E7 and E8 are the lattices with

the highest packing density in their respective dimensions; see [CS99]. Similarly,

one can define the packing density of an arbitrary (measurable) set. Blichfeldt’s

and Minkowski’s Theorems are equivalent to stating that the packing density does

not exceed 1.

PROBLEMS.

The following simple estimates turn out to be quite useful.

1. For x = (ξ1, . . . , ξd) ∈ R
d let ‖x‖∞ = maxi=1,... ,d |ξi|. Let Λ ⊂ R

d be a

lattice. Prove that there exists a non-zero point x ∈ Λ such that ‖x‖∞ ≤
(
detΛ)1/d.

2◦. Let Λ ⊂ R
d be a lattice. Prove that there exists a non-zero point x ∈ Λ

such that ‖x‖ ≤
√
d
(
detΛ
)1/d

.

6. The Minkowski-Hlawka Theorem

Next, we discuss an interesting method to construct higher-dimensional lattices

with a reasonably high packing density. As we will see, the packing radius of

the d-dimensional unimodular lattice that we construct will be about
√
d up to a

constant factor, which is the best possible by Corollary 5.3. The main idea of the

construction is to choose a random lattice.

(6.1) Lemma. Let M ⊂ R
d be a Lebesgue measurable set, let Λ ⊂ R

d be a lattice
and let Π be a fundamental parallelepiped of Λ. For x ∈ R

d let Λ + x =
{
u + x :

u ∈ Λ
}
be the translation of Λ and let |M ∩ (Λ + x)| be the number of points from

Λ + x in M . Then ∫

Π

|M ∩ (Λ + x)| dx = volM.

Proof. For a lattice point u ∈ Λ let [M − u] : Rd −→ R be the indicator function

of the translation M −u; see Section I.7.1. Then |M ∩ (Λ+ x)| =∑u∈Λ[M − u](x)
and∫

Π

|M ∩ (Λ + x)| dx =
∑
u∈Λ

∫

Π

[M − u] dx =
∑
u∈Λ

vol
(
(Π + u) ∩M

)
= volM.

The last equality follows since the translates Π + u cover M without overlapping

by Corollary 2.2. �
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PROBLEMS.

1◦. Let Λ ⊂ R
d be a lattice and let M ⊂ R

d be a measurable set such that

volM < detΛ. Prove that there exists an x ∈ R
d such that M ∩ (Λ + x) = ∅.

2◦. Let f(x) = |M ∩ (Λ + x)|. Prove that f(x+ u) = f(x) for all u ∈ Λ.

We are going to apply Lemma 6.1 to very reasonable sets M , such as a ball, and

definitely not to a general Lebesgue measurable set. In what follows, we assume

that M is “Jordan measurable”, which implies that the volume of M can be well

approximated by using more and more refined meshes. The reader may always

think of M as something familiar, such as a ball or a convex body. Although we

don’t prove the result in its full power (for so-called “star” bodies M), we still get

quite interesting asymptotics. The result was conjectured by H. Minkowski and

proved by E. Hlawka in 1944.

(6.2) The Minkowski-Hlawka Theorem. Let d > 1 and let M ⊂ R
d be a

bounded Jordan measurable set. Let us choose δ > volM . Then there exists a
lattice Λ ⊂ R

d such that det Λ = δ and M does not contain a non-zero point from
Λ.

Proof. Without loss of generality we may assume that volM < 1 and that δ = 1.

Let e1, . . . , ed be the standard basis of Rd and let R
d−1 be the subspace spanned

by e1, . . . , ed−1. Hence we fix a decomposition R
d = R

d−1 ⊕ R. Let us fix a small

α > 0 and let us consider a family of hyperplanes Hk =
{
x : ξd = kα

}
, k ∈ Z. In

particular, H0 = R
d−1. Let Mk = M ∩Hk be the (d − 1)-dimensional slice of M ;

see Figure 87. We choose α to be small enough so that

(6.2.1) Every point from M0 lies within the cube |ξi| < α−1/(d−1) for i = 1, . . . , d−1

(we can do it since M is bounded).

(6.2.2) α
+∞∑

k=−∞
vold−1 Mk < 1.

We can choose such an α because M is Jordan measurable, volM < 1 and the sum

approximates volM arbitrarily close if α is sufficiently small.

We construct Λ by choosing a basis. More precisely, we choose the first

d− 1 vectors u1, . . . , ud−1 of the basis and then choose the remaining vector ud at

random. Let us choose the first d− 1 basis vectors of Λ:

ui = α−1/(d−1)ei for i = 1, . . . , d− 1.

Let Π be the fundamental parallelepiped of the basis u1, . . . , ud−1 in H0, so

vold−1 Π = α−1.

Now, for an x ∈ Π, let us choose ud(x) = x + αed and let Λx be the lattice with

the basis u1, . . . , ud−1, ud(x). Since ud(x) ∈ H1, det Λx = (volΠ)α = 1.
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6. The Minkowski-Hlawka Theorem 307

We claim that for some x ∈ Π, the lattice Λx satisfies the desired property.

The proof is based on the formula

(6.2.3)

∫

Π

|Λx ∩Mk| dx = vold−1 Mk for k �= 0.

Indeed, let Λ0 ⊂ H0 be the lattice with the basis u1, . . . , ud−1. We consider the

case of k ≥ 1 (the case k ≤ −1 is treated similarly). We can write

|Λx ∩Mk| = |Mk ∩
(
Λ0 + kud(x)

)
| = |Mk ∩

(
Λ0 + kαed + kx

)
|.

Let us think of the hyperplane Hk as a (d − 1)-dimensional Euclidean space with

the origin at kαed. Then Λk = Λ0+kαed is a (d−1)-dimensional lattice in Hk and

Λ0 + kud(x) is a translation of Λk by the vector kx.

H

H

H

  H

H

�

0

M2
2

M
11

1

M
0

0

M- 1
- 1

M
- 2

- 2

M

u  (x)
d

Figure 87

We get

∫

Π

|Λx ∩Mk| dx =

∫

Π

|Mk ∩ (Λk + kx)| dx = k−(d−1)

∫

kΠ

|Mk ∩ (Λk + y)| dy

(we substitute y = kx). On the other hand, the parallelepiped kΠ is the union of

kd−1 non-intersecting lattice shifts Π+ u for u ∈ Λ0, so by Problem 2, Section 6.1,

we get that

∫

kΠ

|(Mk ∩ (Λ0 + y)| dy = kd−1

∫

Π

|Mk ∩ (Λ0 + y)| dy.
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Applying Lemma 6.1, we finally conclude that

∫

Π

|Mk ∩ (Λ0 + y)| dy = vold−1 Mk

and hence (6.2.3) follows. Now we observe that

1

vold−1 Π

∫

x∈Π

(∑
k �=0

|Mk ∩ Λx|
)

dx = α
∑
k �=0

vold−1 Mk < 1

by (6.2.2). Therefore, the average value of the number of points in (M \M0)∩Λx is

strictly smaller than 1. Therefore, there must be an x ∈ Π such that the intersection

(M \M0) ∩ Λx is empty. By (6.2.1) we conclude that M0 ∩ Λx consists of at most

the zero vector, which completes the proof. �

PROBLEMS.

1. Let φ be a Lebesgue integrable function on R
d and let Λ ⊂ R

d be a lattice.

Prove that there exists a z ∈ R
d such that

∑
u∈Λ

φ(u+ z) ≤ 1

detΛ

∫

Rd

φ(x) dx.

2. Let φ be a bounded Riemann integrable function vanishing outside a bounded

region in R
d, d > 1, and let ε be a positive number. Prove that there exists a uni-

modular lattice Λ ⊂ R
d such that

∑
u∈Λ\{0}

φ(u) < ε+

∫

Rd

φ(x) dx.

3. Let M ⊂ R
d, d > 1, be a bounded centrally symmetric Jordan measurable

set and let δ > (1/2)(volM). Prove that there exists a lattice Λ ⊂ R
d such that

det Λ = δ and M does not contain any lattice point, except possibly 0.

Hint: Either M does not contain any non-zero lattice point or it contains at

least two.

(6.3) Corollary. For any σ < 2−d there exists a d-dimensional lattice Λ ⊂ R
d

whose packing density is at least σ. Similarly, for any

ρ <
Γ1/d(d/2 + 1)

2
√
π

=

√
d

8πe

(
1 +O
(1
d

))

there exists a d-dimensional lattice Λ ⊂ R
d with packing radius at least ρ and

determinant 1.
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Proof. Let B(0, 2) the ball of radius 2 centered at the origin. By Theorem 6.2,

for any ε > 0 there exists a d-dimensional lattice Λ ⊂ R
d, such that detΛ =

(1+ ε) volB(0, 2) and such that Λ∩B(0, 2) = {0}. Then the packing radius of this

lattice is at least 1 and the packing density is at least

volB(0, 1)

(1 + ε) volB(0, 2)
=

2−d

(1 + ε)
.

Let us choose Λ1 = αΛ where α > 0 is chosen so that detΛ1 = 1. The packing

density of Λ1 is the same as that of Λ (cf. Problem 4 of Section 5.1), but Λ1 is now

a unimodular lattice. The second part follows from the relationship between the

packing density and packing radius; see Problem 2 of Section 5.1 and also Corollary

5.3. �

Lattices whose existence is asserted by Corollary 6.3 are not bad at all when the

dimension d is high. For example, the packing radius of such a lattice has the same

order of magnitude as the upper bound in Corollary 5.3, that is, of the order of
√
d.

It is not easy to present explicitly a sequence of unimodular lattices whose packing

radius grows unbounded as the dimension grows. The proof of Theorem 6.2 suggests

the idea of how to construct such a lattice: we choose a random lattice Λ ⊂ R
d.

More precisely, only the last basis vector should be chosen at random, whereas the

first d − 1 basis vectors are very easy to construct deterministically. The exact

asymptotics of the best packing radius are not known; note that any improvement

by a constant multiplicative factor of the packing radius results in the improvement

of the packing density by an exponential (in the dimension) factor.

PROBLEMS.

1. Prove that for any σ < 21−d there exists a lattice in R
d whose packing

density is at least σ.

Hint: Use Problem 3 of Section 6.2.

2∗. Prove that there exists a lattice in R
d whose packing density is at least

21−d.

Remark: In fact, one can strengthen the bound to ζ(d)21−d, where ζ(d) =∑+∞
n=1 n

−d and d > 1; see Section IX.7 of [C97].

7. The Dual Lattice

As is the case with convex duality (polarity), some important information about a

lattice can be extracted from a properly defined dual object, which, not surprisingly,

turns out to be a lattice.

(7.1) Definition. Let Λ ⊂ R
d be a lattice. The set

Λ∗ =
{
x ∈ R

d : 〈x, y〉 ∈ Z for all y ∈ Λ
}

is called the dual (or polar or reciprocal) to Λ.
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PROBLEMS.

1◦. Let Λ ⊂ R
d be a lattice with a basis u1, . . . , ud. Prove that Λ∗ ⊂ R

d is a

lattice with the basis v1, . . . , vd, where

〈ui, vj〉 =
{

1 if i+ j = d+ 1,

0 otherwise.

Prove that det(Λ∗) · det(Λ) = 1.

2◦. Prove that (Λ∗)∗ = Λ.

3◦. Prove that
(
Z
d
)∗

= Z
d.

4. Prove that (E8)
∗ = E8; cf. Example 1.2.4.

5. Prove that D4 and (D4)
∗ are similar; cf. Example 1.2.3 and Problem 4 of

Section 5.1.

There is a useful relationship between the packing radius of Λ and the packing

radius of Λ∗. Recall that the packing radius ρ(Λ) is equal to half the length of a

shortest non-zero vector from Λ.

(7.2) Lemma. Let Λ ⊂ R
d be a lattice and let Λ∗ ⊂ R

d be the dual lattice. Then,
for the packing radii of Λ and Λ∗, we have

ρ(Λ) · ρ(Λ∗) ≤ d

4
.

Proof. The result follows by Minkowski’s Convex Body Theorem. By Problem 2

of Section 5.3, we have

ρ(Λ) ≤ 1

2

√
d
(
detΛ
)1/d

and ρ(Λ∗) ≤ 1

2

√
d
(
det Λ∗)1/d.

The result follows by Problem 1, Section 7.1. �

Using Corollary 5.3, we can replace the upper bound d/4 by a better bound of

d/(2πe)
(
1 +O(1/d)

)
, but we will not need this refinement.

PROBLEMS.

1◦. Let Λ be a lattice and let Λ0 ⊂ Λ be a sublattice. Prove that

ρ(Λ) ≤ ρ(Λ0) ≤ |Λ/Λ0| · ρ(Λ).

2◦. Let Λ ⊂ R
d be a lattice and let u1, . . . , ud be linearly independent vectors

from Λ∗. Prove that

max
i=1,... ,d

‖v‖ · ‖ui‖ ≥ 1

for each vector v ∈ Λ \ {0}.
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3. Let Λ ⊂ R
d be a lattice and let Λ∗ be the dual lattice. Let us construct a

basis v1, . . . , vd of Λ∗ as follows: let v1 be a shortest non-zero vector in Λ∗ and let

vk ∈ Λ \ span
(
v1, . . . , vk−1

)
be a closest vector to span

(
v1, . . . , vk−1

)
for k > 1; cf.

Theorem 1.4. Check that v1, . . . , vd is a basis of Λ∗. Let u1, . . . , ud be a basis of Λ

dual to v1, . . . , vd:

〈ui, vj〉 =
{

1 if i+ j = d+ 1,

0 otherwise.

Check that u1, . . . , ud is a basis of Λ. Let L0 = {0} and let Lk = span
(
u1, . . . , uk

)
for k ≥ 1. Prove that there is a vector u ∈ Λ \ {0} such that

‖u‖ ≤ d min
k=1,... ,d

dist(uk, Lk−1);

cf. Problem 2 of Section 1.4.

Remark: This result is due to J.C. Lagarias, H.W. Lenstra and C.-P. Schnorr

[LLS90].

A quantity which may be viewed as “dual” to the packing radius of a lattice is

its covering radius.

(7.3) Definition. Let Λ ⊂ R
d be a lattice. The largest possible distance from

a point in R
d to the nearest lattice point is called the covering radius of Λ and

denoted μ(Λ):
μ(Λ) = max

x∈Rd
dist(x,Λ).

In other words, μ(Λ) is the smallest number α such that the balls of radii α centered

at the lattice points cover the whole space R
d.

Figure 88. Example: the covering radius of Z2 is
√
2
2 .
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PROBLEMS.

1◦. Check that the covering radius is well defined and finite.

2. Prove that

μ(Zd) =

√
d

2
, μ(D3) = 1 and μ(Dn) =

√
n

2
for n ≥ 4.

3. Prove that μ(E8) = 1.

There is a remarkable duality result relating the covering radius of a lattice and

the packing radius of the dual lattice.

(7.4) Theorem. Let Λ ⊂ R
d be a lattice and let Λ∗ ⊂ R

d be the dual lattice. Then
the covering radius of Λ and the packing radius of Λ∗ are related by the inequalities

1

4
≤ μ(Λ) · ρ(Λ∗) ≤ c(d), where c(d) =

1

4

√√√√ d∑
k=1

k2 ≤ d3/2

4
.

Proof. We prove the lower bound first (this is the “easy” part and it was known

long before the upper bound). Let us choose linearly independent vectors u1, . . . ,
ud ∈ Λ as follows: u1 is the shortest non-zero vector in Λ, u2 ∈ Λ is the shortest

vector such that u1 and u2 are linearly independent, and so forth, so that ud ∈ Λ

is the shortest vector such that u1, . . . , ud are linearly independent. Then ‖u1‖ ≤
‖u2‖ ≤ . . . ≤ ‖ud‖ (the lengths of ‖ui‖ are called successive minima; cf. Problem

11 of Section 3.2). Let x = (1/2)ud. We claim that

dist(x,Λ) = dist(x, 0) = dist(x, ud) = ‖ud‖/2.

Indeed, suppose that v ∈ Λ is a point such that dist(x, v) < ‖ud‖/2. Then, by the

triangle inequality, ‖v‖ ≤ ‖x‖ + dist(x, v) < ‖ud‖. If v /∈ span
(
u1, . . . , ud−1), we

get a contradiction with the definition of ud. If v ∈ span(u1, . . . , ud−1), then w =

2v − ud ∈ Λ is linearly independent of u1, . . . , ud−1 and ‖w‖ = ‖2(v − x)‖ < ‖ud‖,
which is a contradiction.

Thus we conclude that

μ(Λ) ≥ ‖ud‖
2

≥ ‖ui‖
2

for i = 1, . . . , d.

By Problem 2 of Section 7.2, for all v ∈ Λ∗ \ {0} we have

max
i=1,... ,d

‖v‖ · ‖ui‖ ≥ 1 and hence μ(Λ) · ‖v‖ ≥ 1

2
.

Since ρ(Λ∗) = ‖v‖/2 for a shortest vector v ∈ Λ∗ \ {0}, we get the lower bound

μ(Λ) · ρ(Λ∗) ≥ 1

4
.
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We prove the upper bound by induction on d. If d = 1, then Λ =
{
αm : m ∈ Z

}
and Λ∗ =

{
α−1m : m ∈ Z

}
for some α > 0. Hence μ(Λ) = α/2 and ρ(Λ∗) = α−1/2,

so μ(Λ) · ρ(Λ∗) = 1/4.

Suppose that d > 1. Let u be a shortest non-zero vector in Λ, so that

(7.4.1) ‖u‖ = 2ρ(Λ).

Let us identify the orthogonal complement to u with R
d−1 and let pr : Rd −→ R

d−1

be the orthogonal projection. Let Λ1 = pr(Λ) be the orthogonal projection of Λ

onto R
d−1. Then Λ1 is a lattice in R

d−1; see Problem 3 of Section 1.3.

� pr

x
w+(y-v)

�v

y

w

u

uu

0

1

Figure 89. Black points are from Λ, grey points are from Λ1, white

points are from R
d or Rd−1.

Let Λ∗
1 ⊂ R

d−1 be the lattice dual to Λ1. For every a ∈ Λ∗
1 and every b ∈ Λ,

we have 〈a, b〉 = 〈a, pr(b)〉 ∈ Z, so Λ∗
1 ⊂ Λ∗. In particular,

(7.4.2) ρ(Λ∗
1) ≥ ρ(Λ∗).

Let us choose a point x ∈ R
d and let us estimate dist(x,Λ).

Let y = pr(x). Let v ∈ Λ1 be a closest point to y in Λ1, so

(7.4.3) dist(y, v) ≤ μ(Λ1).

The line through v parallel to u intersects Λ by a set of equally spaced points, each

being of distance ‖u‖ from the next. Hence we can find a point w ∈ Λ such that

pr(w) = v and

(7.4.4) dist
(
x, w + (y − v)

)
≤ ‖u‖

2
;
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see Figure 89. By Pythagoras’ Theorem,

dist2(x,w) = dist2
(
x, w + (y − v)

)
+ dist2(y, v).

Applying (7.4.4) and (7.4.3), we get

dist2(x,w) ≤ μ2(Λ1) +
‖u‖2
4

.

Since x was chosen arbitrary, by using (7.4.1), we conclude that

μ2(Λ) ≤ μ2(Λ1) +
‖u‖2
4

= μ2(Λ1) + ρ2(Λ).

Applying (7.4.2), the induction hypothesis and Lemma 7.2, we get

μ2(Λ) · ρ2(Λ∗) ≤ μ2(Λ1) · ρ2(Λ∗) + ρ2(Λ) · ρ2(Λ∗)

≤ μ2(Λ1) · ρ2(Λ∗
1) + ρ2(Λ) · ρ2(Λ∗)

≤ c2(d− 1) +
d2

16
,

which completes the proof. �

It is known that one can choose c(d) in Theorem 7.4 to be γd for some constant

γ > 0. The above proof belongs to J.C. Lagarias, H.W. Lenstra and C.-P. Schnorr

[LLS90].

PROBLEMS.

1◦. Let u1, . . . , ud ∈ Λ be linearly independent vectors. Prove that

μ(Λ) ≤ 1

2

d∑
i=1

‖ui‖.

In Problems 2–4, {{ξ}} denotes the distance from a number ξ ∈ R to the

nearest integer, so that 0 ≤ {{ξ}} ≤ 1/2.

2. Let θ1, . . . , θn be real numbers such that m1θ1 + . . .+mnθn +mn+1 = 0 for

integers m1, . . . ,mn+1 implies m1 = . . . = mn+1 = 0. Prove Kronecker’s Theorem:

for any real vector a = (α1, . . . , αn) and for any ε > 0 there exists a positive integer

m such that {{αi −mθi}} < ε for i = 1, . . . , n.

Hint: Let d = n + 1 and let τ > 0 be a number. Consider the set Λτ ⊂
R

d of all integer linear combinations of the vectors u1 = (1, 0, . . . , 0), . . . , un =

(0, . . . , 0, 1, 0), un+1 = (θ1, . . . , θn, τ
−1). Show that Λτ is a lattice and that the

packing radius of Λ∗
τ grows to infinity when τ grows. Deduce that the covering

radius of Λτ approaches 0 as τ grows.
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3. Let Λ ⊂ R
d be a lattice and let x ∈ R

d be a point. Prove that for every

v ∈ Λ∗ \ {0}
{{〈v, x〉}}

‖v‖ ≤ dist(x,Λ).

4∗. Prove that for every lattice Λ ⊂ R
d and every x ∈ R

d there is a point

v ∈ Λ∗ \ {0} such that

{{〈v, x〉}}
‖v‖ ≥ 1

6d2 + 1
dist(x,Λ).

Remark: This result is due to J. H̊astad [H̊a88].

8. The Flatness Theorem

Minkowski’s Convex Body Theorem (Theorem 3.2) asserts that a symmetric convex

body of sufficiently large volume contains a lattice point other than the origin. One

may ask if a similar statement can be made about a general convex body. It quickly

becomes clear that the volume is not an issue here: a convex body without lattice

points can have an arbitrarily large volume.

Figure 90. A convex body without lattice points can have an arbi-

trarily large volume.

Having done some experimenting, we start to feel that a convex body without

lattice points must be somewhat “flat”.

Let Λ ⊂ R
d be a lattice and let Λ∗ ⊂ R

d be the dual lattice. Let v ∈ Λ∗ be

a non-zero lattice point. Then lattice Λ can be “sliced” into “layers” Λk of lattice

points:

Λk =
{
u ∈ Λ : 〈u, v〉 = k

}
for k ∈ Z.

It turns out that a convex body without lattice points must be “squeezed” in

between some layers that are not very far apart. This is the main content of the

“Flatness Theorem” that we prove in this section. In fact, there are many “flatness

theorems”: they differ from each other by estimating exactly how far apart those

layers can be. The best possible bound is not known yet and we don’t strive to
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obtain it. Our objective is to give a simple proof of a reasonably good bound. Our

main tool is Theorem 7.4.

(8.1) Lemma. Let Λ ⊂ R
d be a lattice and let B be a ball such that B ∩ Λ = ∅.

Let v ∈ Λ∗ be a shortest non-zero vector. Then

max
{
〈v, x〉 : x ∈ B

}
−min

{
〈v, x〉 : x ∈ B

}
≤ c(d)

where one can choose c(d) = d3/2.

Proof. Let a be the center of B and let β be the radius of B, so B =
{
x : ‖x−a‖ ≤

β
}
. Then

max
{
〈v, x〉 : x ∈ B

}
−min

{
〈v, x〉 : x ∈ B

}

=
(
〈v, a〉+ β‖v‖

)
−
(
〈v, a〉 − β‖v‖

)
= 2β‖v‖.

Since B does not contain lattice points, its radius does not exceed the covering

radius of Λ, so β ≤ μ(Λ). Since v is a shortest non-zero vector from Λ∗, the length

of v is twice the packing radius of Λ∗, so ‖v‖ = 2ρ(Λ∗). The proof now follows by

Theorem 7.4. �

PROBLEM.

1◦. Let Λ1 ⊂ R
d be a lattice and let T : Rd −→ R

d be an invertible linear

transformation. Prove that Λ = T (Λ1) is a lattice and that Λ∗ = (T ∗)−1(Λ∗
1).

(8.2) Lemma. Let Λ ⊂ R
d be a lattice and let E ⊂ R

d be an ellipsoid such that
E ∩ Λ = ∅. Then there exists a non-zero vector w ∈ Λ∗ such that

max
{
〈w, x〉 : x ∈ E

}
−min

{
〈w, x〉 : x ∈ E

}
≤ c(d)

where one can choose c(d) = d3/2.

Proof. Since E is an ellipsoid, there exists an invertible linear transformation T
such that E = T (B), where B is a ball. Let Λ1 = T−1(Λ). Hence, by Problem 1 of

Section 8.1, Λ1 is a lattice and Λ = T (Λ1). Then B ∩Λ1 = ∅ and hence by Lemma

8.1 there exists a non-zero vector v ∈ Λ∗
1 such that

max
{
〈v, y〉 : y ∈ B

}
−min

{
〈v, y〉 : y ∈ B

}
≤ c(d).

Let w = (T ∗)−1v. By Problem 1 of Section 8.1, we have w ∈ Λ∗ \ {0}. Now

max
{
〈w, x〉 : x ∈ E

}
−min

{
〈w, x〉 : x ∈ E

}

= max
{〈

w, T (y)
〉
: y ∈ B

}
−min

{〈
w, T (y)

〉
: y ∈ B

}

= max
{〈

T ∗(w), y
〉
: y ∈ B

}
−min

{〈
T ∗(w), y

〉
: y ∈ B

}

= max
{
〈v, y〉 : y ∈ B

}
−min

{
〈v, y〉 : y ∈ B

}
≤ c(d)

and the result follows. �

Finally, we prove the general “flatness theorem”.
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(8.3) Theorem. Let Λ ⊂ R
d be a lattice and let K ⊂ R

d be a convex body such
that K ∩ Λ = ∅. Then there exists a non-zero vector w ∈ Λ∗ such that

max
{
〈w, x〉 : x ∈ K

}
−min

{
〈w, x〉 : x ∈ K

}
≤ c1(d)

where one can choose c1(d) = d5/2.

Proof. Let E be the maximum volume ellipsoid of K; see Section V.2. Assuming

that a is the center of E, by Theorem V.2.4 we get

E ⊂ K ⊂ d(E − a) + a = dE + (1− d)a.

Let w ∈ Λ∗ be the vector for the ellipsoid E whose existence is asserted by Lemma

8.2. Then

max
{
〈w, x〉 : x ∈ K

}
≤ max

{
〈w, x〉 : x ∈ dE + (1− d)a

}

= (1− d)〈w, a〉+ dmax
{
〈w, x〉 : x ∈ E

}
.

Similarly,

min
{
〈w, x〉 : x ∈ K

}
≥ min

{
〈w, x〉 : x ∈ dE + (1− d)a

}

= (1− d)〈w, a〉+ dmin
{
〈w, x〉 : x ∈ E

}
.

Therefore,

max
{
〈w, x〉 : x ∈ K

}
−min

{
〈w, x〉 : x ∈ K

}

≤ dmax
{
〈w, x〉 : x ∈ E

}
− dmin

{
〈w, x〉 : x ∈ E

}
≤ dc(d) = c1(d)

by Lemma 8.2. �

Let w ∈ Λ∗ be the vector from Theorem 8.3. Let

Λk =
{
u ∈ Λ : 〈u,w〉 = k

}
for k ∈ Z

be the “layers” of lattice points determined by w. Let Hk be the affine hull of

Λk. Theorem 8.3 asserts that if a convex body does not contain lattice points,

then it may intersect only a small number (polynomial in the dimension d) of affine

hyperplanes Hk; cf. Figure 91.

The smallest possible value of c1(d) is not known. It is conjectured though

to be roughly proportional to d. The first (exponential in d) bound for c1(d) was

obtained by A.Ya. Khintchin in 1948. Theorem 8.3 is due to J.C. Lagarias, H.W.

Lenstra and C.-P. Schnorr [LLS90]. It is known that one can choose c(d) = γd for

some γ > 0 in Lemmas 8.1 and 8.2 [Ba95] and that one can choose c1(d) = O(d3/2)
in Theorem 8.3 [BLP99]. Moreover, if K has a center of symmetry, then one can

choose c1(d) = O(d ln d) [Ba95], [Ba96], which is optimal up to a logarithmic

factor.
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H

H

K

1

H
2

3

Figure 91

PROBLEMS.

1. Show that we must have c1(d) ≥ d in Theorem 8.3.

2. Let P ⊂ R
d be a polytope with the vertices v1, . . . , vm ∈ Z

d. Suppose that

m > 2d. Prove that there is a point v ∈ P ∩ Z
d different from v1, . . . , vm.

3∗ (J.-P. Doignon, 1972). Let A1, . . . , Am ⊂ R
d be convex sets. Prove the

following integer version of Helly’s Theorem: if
(
Ai1 ∩ . . . ∩Aik

)
∩ Z

d �= ∅

for every collection of k = 2d sets Ai1 , . . . , Aik , then

( m⋂
i=1

Ai

)
∩ Z

d �= ∅.

Remark: See [Do73].

4. Let P ⊂ R
2 be a convex polygon with vertices in Z

2. Suppose that P does

not contain any point from Z
2 other than its vertices. Prove that there exists a

vector w ∈ Z
2 \ {0} such that

max
{
〈w, x〉 : x ∈ P

}
−min

{
〈w, x〉 : x ∈ P

}
≤ 1.

5∗ (R. Howe). Let P ⊂ R
3 be a convex polytope with vertices in Z

3. Suppose

that P does not contain any point from Z
3 other than its vertices. Prove that there

exists a vector w ∈ Z
3 \ {0} such that

max
{
〈w, x〉 : x ∈ P

}
−min

{
〈w, x〉 : x ∈ P

}
≤ 1.

Remark: See [S85].
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9. Constructing a Short Vector and a Reduced Basis

For various reasons we often need to compute efficiently a shortest or a reasonably

short non-zero vector in a given lattice. This is the case, for example, for the

Flatness Theorem of Section 8 if we want to know a direction in which a convex

body without lattice points is flat. In this section, we sketch an efficient algorithm

due to A.K. Lenstra, H.W. Lenstra and L. Lovász [LLL82]. The procedure is called

now the Lenstra-Lenstra-Lovász reduction or just the LLL reduction. Given a basis

of a lattice, it produces another basis of the same lattice which has some very useful

properties.

(9.1) Reduced basis. Let Λ ⊂ R
d be a lattice and let u1, . . . , ud be a basis of Λ.

Let us describe the properties that we want our basis to satisfy.

Let us define subspaces {0} = L0 ⊂ L1 ⊂ . . . ⊂ Ld = R
d by

Lk = span
(
u1, . . . , uk

)
for k = 1, . . . , d.

Let L⊥
k denote the orthogonal complement of Lk and let wk denote the orthogo-

nal projection of uk onto L⊥
k−1. In other words, w1, . . . , wd is the Gram-Schmidt

orthogonalization (without normalization!) of u1, . . . , ud.

0 u   =  w

u
w

1 1

2
2

Figure 92

In particular, w1 = u1, w2, . . . , wd is a basis of Rd and

‖wk‖ = dist(uk, Lk−1) for k = 1, . . . , d.

Hence we can write

(9.1.1) uk = wk +

k−1∑
i=1

αkiwi for k = 1, . . . , d.

We say that the basis u1, . . . , ud is reduced (or Lenstra-Lenstra-Lovász reduced or

LLL reduced) if the following properties (9.1.2)–(9.1.3) are satisfied:

(9.1.2) |αki| ≤
1

2
for all 1 ≤ i < k ≤ d
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and

(9.1.3)

dist2(uk, Lk−1) ≤τ dist2(uk+1, Lk−1) for k = 1, . . . , d− 1

with τ =
4

3
.

The last condition is written in a bizarre way; indeed, the exact value of τ is not

really important as long as 1 < τ < 4 with the standard choice being τ = 4/3. We

will trace the role of the parameter τ throughout the proofs that follow to reveal

the mystery of 4/3.

At this point, it is not clear whether a reduced basis exists, let alone how to

construct one. But before we show how to construct such a basis, we demonstrate

that a reduced basis, if one exists, satisfies some useful properties.

(9.2) Theorem. Let Λ ⊂ R
d be a lattice and let u1, . . . , ud be its reduced basis.

Then

‖u1‖ ≤ 2
d−1
2 ‖v‖ for all v ∈ Λ \ {0}.

In other words, the first basis vector u1 is reasonably short.

Proof. By (9.1.1),

dist(uk+1, Lk−1) = ‖wk+1 + αk+1,kwk‖.

By (9.1.3) and (9.1.2), we get

‖wk‖2 = dist
2
(uk, Lk−1) ≤ τ dist2(uk+1, Lk−1) = τ‖wk+1‖2 + τα2

k+1,k‖wk‖2

≤ τ‖wk+1‖2 + (τ/4)‖wk‖2.

Therefore,

‖wk+1‖2 ≥ τ−1(1− τ/4)‖wk‖2 =
1

2
‖wk‖2

(now we see why we should have τ < 4). Iterating the inequality, we get

‖wk‖2 ≥ 1

2
‖wk−1‖2 ≥ 1

4
‖wk−2‖2 ≥ . . . ≥ 2−k+1‖w1‖2.

In particular,

dist(uk, Lk−1) = ‖wk‖ ≥ 2
1−d
2 ‖w1‖ = 2

1−d
2 ‖u1‖.

The proof follows by Problem 2 of Section 1.4. �

PROBLEMS.

1. Let Λ ⊂ R
d be a lattice and let u1, . . . , ud be its reduced basis. Prove that

‖u1‖ ≤ 2(d−1)/4
(
detΛ
)1/d

; cf. Problem 2 of Section 5.3.
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2. Let Λ ⊂ R
d be a lattice and let u1, . . . , ud be its reduced basis. Prove that

d∏
i=1

‖ui‖ ≤ 2
d(d−1)

4 det Λ;

cf. Problem 3 of Section 1.4 and Problem 12 of Section 3.2.

3 (L. Babai). Let Λ ⊂ R
d be a lattice, let u1, . . . , ud be its reduced basis and

let w1, . . . , wd be the Gram-Schmidt orthogonalization of u1, . . . , ud. Given a point

b ∈ R
d, show that there exists a point v ∈ Λ such that

b− v =

d∑
i=1

βiwi where |βi| ≤
1

2
for i = 1, . . . , d

and that for such a point we have

dist(b, v) ≤ 2d/2−1 dist(b,Λ).

4. Let Λ ⊂ R
d be a lattice, let u1, . . . , ud be its reduced basis and let u ∈ Λ be

a shortest non-zero lattice vector. Suppose that u =
∑d

k=1 γkuk for some γk ∈ Z.

Prove that |γk| ≤ 3d for k = 1, . . . , d.

Now we discuss why a reduced basis exists and how to construct one.

(9.3) The algorithm to construct a reduced basis. We start with an arbitrary

basis u1, . . . , ud of Λ. Indeed, we have to assume that the lattice Λ is given to us

somehow; we assume, therefore, that it is given by some basis. The algorithm

consists of repeated applications of the following two procedures.

(9.3.1) Enforcing conditions (9.1.2). Given the current basis u1, . . . , ud of Λ, we

compute the Gram-Schmidt orthogonalization w1, . . . , wd as in Section 9.1 and

compute the expansion (9.1.1). These are problems of linear algebra and can be

solved easily. If |αki| ≤ 1/2 for all 1 ≤ i < k ≤ d, we go to (9.3.2). Otherwise, we

locate a pair of indices i < k with |αki| > 1/2 and the largest i. We modify uk by

new uk := old uk − [αki]ui, where [αki] is the nearest integer to αki

(and ties are broken arbitrarily). Clearly, this action does not change the subspaces

Lk = span
(
u1, . . . , uk) and the vectors w1, . . . , wd. It changes, however, some of

the coefficients in (9.1.1). The coefficients of (9.1.1) that do change are αkj with

j ≤ i. In particular, we get

new αki := old αki − [old αki] = {{old αki}},

where {{ξ}} is the signed distance of a real number ξ to the nearest integer, so

−1/2 ≤ {{ξ}} ≤ 1/2. We repeat this procedure, always “straightening out”

the rightmost “wrong” coefficient αki so that any of αk,i+1, . . . , αkk do not get

“spoiled”. After repeating the procedure at most
(
d
2

)
times, (9.1.2) is satisfied.
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(9.3.2) Enforcing conditions (9.1.3). We check conditions (9.1.3); they are easy to

check having expansions (9.1.1). If the conditions are satisfied, we stop and output

the current basis u1, . . . , ud. If, in fact,

dist
2
(uk, Lk−1) > τ dist2(uk+1, Lk−1),

we swap uk and uk+1:

new uk := old uk+1 and new uk+1 := old uk

and go to (9.3.1).

0 0

old 

old new

L L

u

u u
k - 1 k - 1

k

kk + 1

new u
k + 1

Figure 93. If uk+1 is much closer to Lk−1 than uk we swap uk and

uk+1.

Clearly, if the algorithm ever stops, it outputs the reduced basis u1, . . . , ud.

It is not obvious, however, that the algorithm cannot cycle endlessly. In fact, it

does stop and, moreover, the running time is quite reasonable. In practice, the

algorithm performs quite well. We prove a bound for the running time, which,

although not optimal, hints that the algorithm actually runs in polynomial time
(to prove that the algorithm indeed runs in polynomial time, we also need to verify

that the numbers do not grow too wild, which we don’t do here).

PROBLEMS.

1◦. Let Λ ⊂ R
d be a lattice and let u1, . . . , ud ∈ Λ be its basis. Let

L0 = {0} and Lk = span
(
u1, . . . , uk

)
for k = 1, . . . , d.
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Let wk be the orthogonal projection of uk onto L⊥
k−1 for k = 1, . . . , d.

For k = 1, . . . , d, let Λk = Λ ∩ Lk. Considering Λk as a lattice in Lk, prove

that

detΛk =

k∏
i=1

‖wi‖.

2◦. Let Λ ⊂ R
d be a lattice, let u1, . . . , uk ∈ Λ be linearly independent points

and let Lk = span
(
u1, . . . , uk). Let Λk = Λ∩Lk. Let us consider Λk as a lattice in

L. Prove that

detΛk ≥
( λ√

k

)k
, where λ = min

u∈Λ\{0}
‖u‖.

(9.4) Theorem. Let Λ ⊂ R
d be a lattice given by its basis u1, . . . , ud. Let us

define the subspaces {0} = L0 ⊂ L1 ⊂ . . . ⊂ Ld = R
d by

Lk = span
(
u1, . . . , uk) for 1 ≤ k ≤ d.

Let Λk = Λ ∩ Lk. We consider Λk as a lattice in Lk. Let us define

D(u1, . . . , ud) =

d−1∏
k=1

(
detΛk

)

and let
λ = min

v∈Λ\{0}
‖v‖

be the length of a shortest non-zero vector of the lattice.

Let m be a positive integer such that

τ−m/2D(u1, . . . , ud) =
(√3

2

)m/2

D(u1, . . . , ud) < λd(d−1)/2
d−1∏
k=1

k−k/2.

Then Algorithm 9.3 stops after at most m + 1 applications of (9.3.1) and at most
m+ 1 applications of (9.3.2).

In particular, every lattice has a reduced basis.

Proof. Let us see what happens toD(u1, . . . , ud) when we change the basis u1, . . . ,
ud by performing procedures (9.3.1) and (9.3.2) of the algorithm. Procedure (9.3.1)

does not change the spaces Lk and hence does not change D(u1, . . . , ud).

Swapping uk and uk+1 in procedure (9.3.2) changes the space Lk only. Let us

see how det Λk changes.

Let w1, . . . , wd be the Gram-Schmidt orthogonalization of u1, . . . , ud. By Prob-

lem 1 of Section 9.3,

detΛk =

k∏
i=1

‖wi‖.
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In this product, procedure (9.3.2) changes the factor ‖wk‖ only. We have

‖new wk‖ = dist
(
new uk, Lk−1

)
= dist

(
old uk+1, Lk−1

)

< τ−1/2 dist
(
old uk, Lk−1

)
= τ−1/2‖old wk‖.

Hence each application of swapping in procedure (9.3.2) gets D(u1, . . . , ud) mul-

tiplied by τ−1/2 =
√
3/2 or a smaller number (it clear now why we should have

τ > 1).

By Problem 2 of Section 9.3, we get

D(u1, . . . , ud) =

d−1∏
k=1

(detΛk) ≥
d−1∏
k=1

( λ√
k

)k
= λd(d−1)/2

d−1∏
k=1

k−k/2

for any basis u1, . . . , ud of Λ.

Hence Algorithm 9.3 performs procedure (9.3.2) at most m+ 1 times (the last

application checks that conditions (9.1.3) are satisfied and outputs the current basis

u1, . . . , ud). Since each application of procedure (9.3.2) is accompanied by at most

one application of procedure (9.3.1), the result follows. �

C.-P. Schnorr constructed a modification of the algorithm, which, for any fixed

ε > 0, produces in polynomial time a non-zero lattice vector whose length approx-

imates the length of a shortest non-zero lattice vector within a factor of (1 + ε)d

[Sch87].

PROBLEM.

1. Suppose that Λ ⊂ Z
d is a sublattice of the standard integer lattice. Prove

that D(u1, . . . , ud) ≥ 1 for any basis u1, . . . , ud of Λ.

10. Remarks

Our main references are [C97], [GL87] and [CS99]. In particular, [CS99] contains

a wealth of material on particularly interesting lattices and sphere packings. For the

Lenstra-Lenstra-Lovász reduced basis and its numerous applications, see [Lo86],

[GLS93] and the original paper [LLL82]. A nice generalization of the reduction

for arbitrary norms is given in [LS92].
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Chapter VIII

Lattice Points and

Polyhedra

We discuss the enumeration of lattice points in polyhedra. Our main tools are

generating functions, also known as exponential sums, and some identities in the

algebra of polyhedra. A parallel theory for exponential integrals is developed in the

exercises. Since we are interested in combinatorial rather than metric properties,

we consider the case of the standard integer lattice Z
d ⊂ R

d only. The case of a

general lattice Λ ⊂ R
d reduces to that of Zd by a change of the coordinates.

1. Generating Functions and Simple Rational Cones

Let P ⊂ R
d be a polyhedron and let Zd ⊂ R

d be the standard integer lattice. For

a point m = (μ1, . . . , μd) ∈ Z
d we write xm for the monomial

xm = xμ1

1 · · ·xμd

d

in d (complex) variables (x1, . . . , xd). We agree that x0
i = 1 for all i = 1, . . . , d.

The main object of the chapter is the generating function

f(P,x) =
∑

m∈P∩Zd

xm;

see Figure 94 for an example.

If the sum is infinite, the issue of convergence emerges. Usually, there will

be a non-empty open set U ⊂ C
d such that the series converges absolutely for

all x ∈ U and uniformly on compact subsets of U . We don’t emphasize analytic

rigor here; one can always think that the series behaves “just like the (multiple)
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326 VIII. Lattice Points and Polyhedra

geometric series”, the basic example being the series
∑∞

m=0 x
m which converges to

1/(1− x) absolutely for all x with |x| < 1 and uniformly on compact subsets of the

set U = {x ∈ C : |x| < 1}.

0 1-1

1

2

-1

P

Figure 94. Example: f(P,x) = x−1
1 x−1

2 + x−1
1 + x−1

2 + 1 + x−1
1 x2 +

x1x
−1
2 + x1 + x2 + x1x2 + x22 + x1x

2
2 + x21x2

It is convenient to introduce some notation. For y = (η1, . . . , ηd) ∈ C
d, let us

define

ey =
(
exp{η1}, . . . , exp{ηd}

)
∈ C

d.

Hence for m = (μ1, . . . , μd) ∈ Z
d and x = ey we have

xm = exp{η1}μ1 · · · exp{ηd}μd = exp
{
η1μ1 + . . .+ ηdμd

}
= exp

{
〈y,m〉

}
.

We denote by Z
d
+ the set of all d-tuples (μ1, . . . , μd) of non-negative integers.

Our immediate goal is to look at the generating function when P is a cone.

(1.1) Definition. Let u1, . . . , uk ∈ Z
d be linearly independent lattice vectors and

let

K = co
(
u1, . . . , uk

)
.

The cone K is called a simple rational cone.
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1. Generating Functions and Simple Rational Cones 327

PROBLEMS.

1◦. Check that a simple rational cone in R
d is a closed convex cone without

straight lines.

2◦. Let K =
{
(ξ1, ξ2) : 0 ≤ ξ2 ≤ ξ1

√
2
}
⊂ R

2. Prove that K is not a simple

rational cone.

3◦. Let K = [0,+∞) ⊂ R
1. Check that

f(K,x) =
∞∑

n=0

xn =
1

1− x

for all x ∈ C such that |x| < 1.

4◦. Let

K = R
d
+ =
{
(ξ1, . . . , ξd) ∈ R

d : ξi ≥ 0 for all i = 1, . . . , d
}
.

Prove that

f(K,x) =
∑

(μ1,... ,μd)∈Zd
+

xμ1

1 · · ·xμd

d =

d∏
i=1

1

1− xi

for all (x1, . . . , xd) ∈ C such that |xi| < 1 for i = 1, . . . , d.

5◦. Let u ∈ Z
d be an integer vector and let U =

{
x ∈ C

d : |xu| < 1
}
. Prove

that ∑
μ∈Z+

xμu =
1

1− xu

for every x ∈ U and that the convergence is absolute and uniform on compact

subsets of U .

Here is our first result.

(1.2) Lemma. Let
K = co

(
u1, . . . , uk),

where u1, . . . , uk ∈ Z
d are linearly independent vectors. Let

Π =
{ k∑

i=1

αiui : 0 ≤ αi < 1
}

be the “semi-open” parallelepiped spanned by u1, . . . , uk. Let

U =
{
x ∈ C

d : |xui | < 1 for i = 1, . . . , k
}
.

Then for all x ∈ U the series ∑
m∈K∩Zd

xm

converges absolutely and uniformly on compact subsets of U to the rational function

f(K,x) =

( ∑
n∈Π∩Zd

xn

) k∏
i=1

1

1− xui
.
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328 VIII. Lattice Points and Polyhedra

Proof. The proof resembles that of Lemma VII.2.1. For a real number ξ, let �ξ�
be the integer part of ξ (the largest integer not exceeding ξ) and let {ξ} = ξ − �ξ�
be the fractional part of ξ.

Let us choose a point m ∈ K ∩ Z
d, so

m =

k∑
i=1

αiui where αi ≥ 0 for i = 1, . . . , d.

Let

m1 =

k∑
i=1

{αi}ui and m2 =

k∑
i=1

�αi�ui.

Thus m = m1 +m2, m1 is an integer point in Π and m2 is a non-negative integer

combination of u1, . . . , uk. Hence every point m ∈ K ∩ Z
d can be represented as

the sum of an integer point from Π and a non-negative integer combination of the

vectors ui. As in Lemma VII.2.1, it follows that the representation is unique. It

is also clear that the sum of an integer point from Π and a non-negative integer

combination of u1, . . . , uk is an integer point from K.

Therefore, we have

∑
m∈K∩Zd

xm =

( ∑
n∈Π∩Zd

xn

)( ∑

(ν1,... ,νk)∈Zk
+

xν1u1+...+νkuk

)

(as formal power series). The second factor is a multiple geometric series which

sums up to
k∏

i=1

1

1− xui

and the result follows; cf. Problem 5 of Section 1.1. �

PROBLEMS.

1◦. Let K ⊂ R
d be a simple rational cone as in Lemma 1.2 and let

Π =
{ k∑

i=1

αiui : 0 < αi ≤ 1 for i = 1, . . . , k
}
.

Let intK denote the interior of K considered as a convex set in its affine hull. Prove

that

f(intK,x) =
∑

m∈intK∩Zd

xm =

( ∑

n∈Π∩Zd

xn

) k∏
i=1

1

1− xui

provided |xui | < 1 for i = 1, . . . , k.
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1. Generating Functions and Simple Rational Cones 329

2◦. Given a simple rational cone K = co(u1, . . . , uk), let us consider two

rational functions

f(K,x) =

( ∑
n∈Π∩Zd

xn

) k∏
i=1

1

1− xui
and

f(intK,x) =

( ∑

n∈Π∩Zd

xn

) k∏
i=1

1

1− xui

in d complex variables x ∈ C
d as in Lemma 1.2 and Problem 1 above. Let x−1

denote (x−1
1 , . . . , x−1

d ) for x = (x1, . . . , xd). Prove the reciprocity relation

f(intK,x−1) = (−1)kf(K,x).

Hint: Consider the transformation m �−→ u−m, where u = u1+ . . .+uk. Show

that it establishes a bijection between the sets Π ∩ Z
d and Π ∩ Z

d.

3◦. Let u1, . . . , uk ∈ Z
d be linearly independent vectors, let Lk = span

(
u1, . . . ,

uk

)
and let Λk = Z

d ∩ Lk. Let us consider Λk as a lattice in Lk. Suppose that

u1, . . . , uk is a basis of Λk. Prove that under the conditions of Lemma 1.2, we have

f(K,x) =

k∏
i=1

1

1− xui
.

Here is a continuous version of Lemma 1.2.

4. Let u1, . . . , ud ∈ R
d be linearly independent vectors and let K = co

(
u1, . . . ,

ud) be the cone spanned by u1, . . . , ud. Let

Π =
{ d∑

i=1

αiui : 0 ≤ αi ≤ 1 for i = 1, . . . , d
}

be the parallelepiped spanned by u1, . . . , ud.

Prove that for c = a+ ib where a ∈ intK◦ (recall that K◦ is a polar of K) and

b ∈ R
d, we have ∫

K

exp
{
〈c, x〉} dx =

(
volΠ
) d∏
i=1

〈−c, ui〉−1

(we let 〈a+ ib, x〉 = 〈a, x〉+ i〈b, x〉).
Hint: Applying a linear transformation, we may assume that K = R

d
+ is the

standard non-negative orthant.

Here are some other interesting generating functions.
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5. Let a and b be coprime positive integers. Let

S =
{
μ1a+ μ2b : μ1, μ2 ∈ Z and μ1, μ2 ≥ 0

}

be the set of all non-negative integer combinations of a and b (in other words,

S ⊂ Z+ is a semigroup generated by a and b; cf. Problem 11 of Section VII.1.2).

Prove that ∑
m∈S

xm =
1− xab

(1− xa)(1− xb)

provided |x| < 1.

6∗. Let a, b and c be coprime positive integers. Let

S =
{
μ1a+ μ2b+ μ3c : μ1, μ2, μ3 ∈ Z and μ1, μ2, μ3 ≥ 0

}

be the set of all non-negative integer combinations of a, b and c. Hence S ⊂ Z+

is a semigroup generated by a, b and c. Prove that there exist positive integers δi,
i = 1, . . . , 5, and numbers εi ∈ {−1, 1}, i = 1, . . . , 5, such that

∑
m∈S

xm =
1 + ε1x

δ1 + ε2x
δ2 + ε3x

δ3 + ε4x
δ4 + ε5x

δ5

(1− xa)(1− xb)(1− xc)

provided |x| < 1.

Remark: See [BP99] for discussion and some references.

2. Generating Functions and Rational Cones

Our next goal is to extend Lemma 1.2 to a larger class of sets.

(2.1) Definitions. Let ci ∈ Z
d, i = 1, . . . , n, be integer vectors. The set

K =
{
x ∈ R

d : 〈ci, x〉 ≤ 0 for i = 1, . . . , n
}

is called a rational cone.

Let ci ∈ Z
d be integer vectors and let αi ∈ Z be integer numbers for i =

1, . . . , n. The set

P =
{
x ∈ R

d : 〈ci, x〉 ≤ αi for i = 1, . . . , n
}

is called a rational polyhedron.

We denote by Q
d the set of all points with rational coordinates in R

d.

A polytope P ⊂ R
d is called an integer (resp. rational) polytope provided the

vertices of P are points from Z
d (resp. Qd).

We will need “rational” versions of the Weyl-Minkowski Theorem; see Corollary

II.4.3 and Corollary IV.1.3.
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PROBLEMS.

1◦. Let P ⊂ R
d be a rational polyhedron and let v be a vertex of P . Prove

that v has rational coordinates.

Hint: Cf. Theorem II.4.2.

2◦. Let P ⊂ R
d be a bounded rational polyhedron. Prove that P is a rational

polytope.

Hint: Use Problem 1 above and Corollary II.4.3.

3◦ Let P ⊂ R
d be a rational polytope. Prove that the polar P ◦ ⊂ R

d is a

rational polyhedron.

Hint: Cf. Problem 7 of Section IV.1.1

4◦. Let P ⊂ R
d be a rational polytope. Prove that P is a rational polyhedron.

Hint: Use Problem 3 above and Corollary IV.1.3.

5◦. Let P ⊂ R
d be rational polytope. Prove that there exists a positive integer

δ such that δP is an integer polytope.

Next, we prove that a rational cone without straight lines has an integer poly-

tope as a base; see Definition II.8.3.

(2.2) Lemma. Let K ⊂ R
d, K �= {0}, be a rational cone without straight lines.

Then there exists an integer polytope Q ⊂ R
d which is a base of K. In other words,

there exist points v1, . . . , vn ∈ Z
d such that every point x ∈ K \ {0} has a unique

representation x = λy for y ∈ Q = conv
(
v1, . . . , vn

)
and λ > 0.

Proof. Suppose that

K =
{
x : 〈ci, x〉 ≤ 0 for i = 1, . . . ,m

}
,

where ci ∈ Z
d. Let c = c1 + . . . + cm, so c is an integer vector. Let us prove that

〈c, x〉 < 0 for all x ∈ K \ {0}.
Clearly, 〈c, x〉 ≤ 0 for every x ∈ K. On the other hand, if 〈c, x〉 = 0 for some

x ∈ K, then we must have 〈ci, x〉 = 0 for i = 1, . . . ,m (if the sum of non-positive

numbers is 0, each number should be equal to 0). Since we assumed that K does

not contain straight lines, we must have x = 0.

In particular, since K �= {0}, we have c �= 0.

Let us define an affine hyperplane

H =
{
x ∈ R

d : 〈c, x〉 = −1
}

and let P = K ∩H. Hence for every x ∈ K \{0} there is a λ > 0 such that λx ∈ P .

Thus P is a base of K.

Clearly, P is a rational polyhedron. We claim that P is a polytope. To demon-

strate this, we prove that P does not contain rays (see Section II.16). Indeed,
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suppose that P contains a ray a + τb for τ ≥ 0. Then b �= 0 and we must have

〈ci, b〉 ≤ 0 for i = 1, . . . ,m and hence b ∈ K. On the other hand, we must have

〈c, b〉 = 0, which is a contradiction. By Lemma II.16.3, P must be a convex hull of

the set of its extreme points and hence, by Theorem II.4.2, P must be a polytope.

Finally, by Problem 2 of Section 2.1, P is a rational polytope.

Choosing Q = δP for some appropriate positive integer δ (cf. Problem 5 of

Section 2.1), we obtain an integer polytope Q which is a base of K. �

PROBLEM.

1. Prove that K ⊂ R
d is a rational cone if and only if K can be written as

K = co
(
u1, . . . , un

)
for some u1, . . . , un ∈ Z

d.

To reduce the case of a rational cone to the case of a simple rational cone, we

need an intuitively obvious, although not-so-easy-to-prove, fact that every polytope

adopts a triangulation, that is, it can be represented as a union of simplices such

that every two simplices can intersect only at a common face.

Figure 95. A triangulation of a polygon

Since a rigorous proof may require considerable effort, we sketch only a possible

approach below; see Chapter 9 of [Z95].

(2.3) Lemma. Let P ⊂ R
d be a polytope with the vertices v1, . . . , vn. There exists

a partition I1 ∪ . . . ∪ Im = {1, . . . , n} such that for the polytopes

Δj = conv
(
vi : i ∈ Ij

)
, j = 1, . . . ,m,

we have
1. the points {vi : i ∈ Ij} are affinely independent for all j = 1, . . . ,m and

dimΔj = dimP for j = 1, . . . ,m;
2.

P =

m⋃
j=1

Δj ;

3. the intersection Δj ∩Δk, if non-empty, is a proper common face of Δi and
Δj.
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Sketch of Proof. Without loss of generality, we may assume that dimP = d.
Let us consider Rd as the hyperplane ξd+1 = 0 in R

d+1. Thus we think of vertices

vi of P as points (vi, 0) in R
d+1. Let us “lift” vi slightly into R

d+1. Namely,

we let ui = (vi, τi), where τi > 0 are “generic” numbers for i = 1, . . . , n. Let

Q = conv
(
ui : i = 1, . . . , n

)
be the “lifted” polytope, so Q ⊂ R

d+1. One can show

that if the τi are sufficiently generic, then Q is a simplicial (d + 1)-dimensional

polytope, that is, every facet of Q is a d-dimensional simplex.

R

R

P

Q

d

d + 1

Figure 96. Lifting a polytope to obtain its triangulation

For a generic point x ∈ P , the straight line (x, τ ) intersects ∂Q at two points:

one belonging to the “lower” facet and the other belonging to the “upper” facet.

The projections of the lower facets induce a triangulation of P . �

Now we are ready to prove the main result of this section (it is still a lemma,

not a theorem though).

(2.4) Lemma. Let K ⊂ R
d be a rational cone without straight lines and let K◦ be

the polar of K. Let us define a subset U ⊂ C
d by

U =
{
ex+iz : x ∈ intK◦ and z ∈ R

d
}
.

Then U ⊂ C
d is a non-empty open set and for every x ∈ U the series∑

m∈K∩Zd

xm

converges absolutely and uniformly on compact subsets of U to a rational function

f(K,x) =

n∑
i=1

pi(x)

(1− xui1) · · · (1− xuid)
,

where pi(x) are Laurent polynomials and uij ∈ Z
d are integer vectors for i =

1, . . . , n and j = 1, . . . , d.
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Proof. Without loss of generality, we assume that K �= {0}. By Lemma 2.2, there

exists an integer polytope Q which is a base ofK. Triangulating Q (Lemma 2.3), we

represent K as a union of simple rational cones (see Definition 1.1) Ki, i ∈ I, such
that the intersection of every two cones is a common face of the cones, which, if not

{0}, must be a simple rational cone. Using the Inclusion-Exclusion Formula (see

Section I.7), we can represent the indicator function of K as a linear combination

of the indicator functions of Ki:

[K] =
∑
i∈I

εi[Ki] where εi ∈ {−1, 1}.

Hence the same relation holds for the generating functions (considered as an identity

between formal power series):

∑
m∈K∩Zd

xm =
∑
i∈I

εi

( ∑
m∈Ki∩Zd

xm

)
.

Clearly, for all x ∈ U and all m ∈ K ∩ Z
d we have |xm| < 1, so by Lemma 1.2 the

series in the right-hand side of the identity converges absolutely and uniformly on

compact subsets of U to rational functions in x of the required type (multiplying

the numerator and denominator of each fraction by some binomials (1 − xu), we

can ensure that each denominator is the product of exactly d binomials).

It remains to show that the set U is open. If dimK◦ < d, then by Theorem

II.2.4 the cone K◦ is contained in a hyperplane and hence K = (K◦)◦ contains

a straight line, which is a contradiction. Thus dimK◦ = d and hence the result

follows. �

PROBLEMS.

1. In Lemma 2.4, let k = dimK and let intK denote the interior of K consid-

ered as a convex set in its affine hull. Prove that for every x ∈ U the series

∑
m∈intK∩Zd

xm

converges absolutely to a rational function f(intK,x) and that

f(intK,x−1) = (−1)kf(K,x)

(the reciprocity relation).

Hint: Use Problems 1 and 2 of Section 1.2 and Problems 7 and 8 of Section

VI.3.3.

Here is a continuous version of Lemma 2.4.

2. Let K ⊂ R
d be a polyhedral cone without straight lines. Prove that for

c = x+ iy, where x ∈ intK◦ and y ∈ R
d, the integral

∫

K

exp
{
〈c, x〉
}
dx
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converges to a rational function

m∑
i=1

αi

d∏
j=1

〈−c, uij〉−1,

where uij ∈ R
d are some vectors and αi are some real numbers.

Hint: Use Problem 4 of Section 1.2.

3. Generating Functions and Rational Polyhedra

In this section, we prove the main result of this chapter. But first we need one more

lemma.

(3.1) Lemma. Let P ⊂ R
d be a rational polyhedron without straight lines. Then

there exists a non-empty open set U ⊂ C
d such that for all x ∈ U the series

∑
m∈P∩Zd

xm

converges absolutely and uniformly on compact subsets of U to a rational function
f(P,x) of x.

Proof. Let us identify R
d with the affine hyperplane H defined by the equation

ξd+1 = 1 in R
d+1. Suppose that P is defined by a system of linear inequalities:

P =
{
x ∈ R

d : 〈ci, x〉 ≤ αi, i = 1, . . . , n
}
, where ci ∈ Z

d and αi ∈ Z

for i = 1, . . . , n. Let us define K ⊂ R
d+1 by

K =
{
(x, ξd+1) : 〈ci, x〉 − αiξd+1 ≤ 0 for i = 1, . . . , n and ξd+1 ≥ 0

}
.

Clearly, K ⊂ R
d+1 is a rational cone. If P is bounded, then K = co(P ) and if P is

unbounded, then K = cl
(
co(P )
)
. Note that P = K ∩H; see Figure 97.

Moreover, K does not contain straight lines. Indeed, suppose that K contains

a straight line in the direction of y = (η1, . . . , ηd+1). Then we must have ηd+1 = 0

since the last coordinate must stay non-negative and then η1 = . . . = ηd = 0 since

P does not contain straight lines.

By Lemma 2.4, there exists a non-empty open set U1 ⊂ C
d+1 such that for all

y = (x, xd+1) ∈ U1 the series

∑
m∈K∩Zd+1

ym =
∑

(m1,μ)∈K∩Zd+1

xm1xμ
d+1

converges absolutely and uniformly on compact subsets of U1 to a rational function

f
(
K, (x, xd+1)

)
.
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P

0

R
d

�������
d + 1

R
d + 1

K

Figure 97. The reader who imagines the positive direction as upward

may need to view this picture upside down.

We obtain f(P,x) by differentiating f
(
K, (x, xd+1)

)
with respect to xd+1 and

substituting xd+1 = 0 into the derivative.

Indeed, we observe that for every lattice point (m1, μ) ∈ K the last coordinate

μ is non-negative. By a standard result in complex analysis, we can differentiate

the series and conclude that the series

(3.1.1)
∑

(m1,μ)∈K∩Z
d+1

m1∈Z
d,μ≥1

μxm1xμ−1
d+1 =

∑
m1∈P∩Zd

xm1 +
∑

(m1,μ)∈K∩Z
d+1

m1∈Z
d,μ≥2

μxm1xμ−1
d+1

converges absolutely and uniformly on compact sets in U1 to a rational function

∂

∂xd+1
f
(
K, (x, xd+1)

)
.

Let U ⊂ C
d be the projection of U1: (x, xd+1) �−→ x. Substituting xd+1 = 0 in

(3.1.1), we conclude that for every x ∈ U the series

∑
m1∈P∩Zd

xm1

converges absolutely and uniformly on compact subsets of U1 to the rational func-

tion

f(P,x) =
∂

∂xd+1
f
(
K, (x, xd+1)

)∣∣
xd+1=0

.

�
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PROBLEMS.

1◦. In the situation of Lemma 3.1, let m ∈ Z
d be a lattice vector and let P +m

be the translation of P . Prove that

f(P +m,x) = xmf(P,x).

Here is a continuous version of Lemma 3.1.

2. Let P ⊂ R
d be a polyhedron without straight lines. Prove that there exists

a non-empty open set U ⊂ C
d and a rational function φ : Cd −→ C such that for

all c ∈ U we have ∫

P

exp
{
〈c, x〉
}
dx = φ(c)

and the integral converges absolutely. Again, we let 〈c, x〉 = 〈a, x〉 + i〈b, x〉 for a

complex vector c = a+ ib.

Hint: Use Problem 2 of Section 2.4 and the trick of Lemma 3.1. Instead of

differentiating, use the Laplace transform.

3∗. Let u1, . . . , un ∈ Z
d be vectors such that the cone K = co

(
u1, . . . , un

)
does

not contain straight lines. Let

S =
{ n∑

i=1

αiui where α1, . . . , αn are non-negative integers
}

be the semigroup generated by u1, . . . , un; cf. Problem 6 of Section 1.2. Prove

that there exists a non-empty open set U ⊂ C
d such that for all x ∈ U the series∑

m∈S xm converges absolutely and uniformly on compact subsets of U to a rational

function in x.

Hint: Let Rn
+ be the non-negative orthant in R

n. Construct a linear transfor-

mation T : Rn −→ R
d such that T

(
Z
n
+

)
= S. Construct a set Q ⊂ R

n
+ which is a

finite union of rational polyhedra and such that the restriction T : Q∩Z
n −→ S is

a bijection. Apply Lemma 3.1.

We are getting ready to prove the central result of this chapter. We state it

in the form of the existence theorem for some particular valuation; cf. Sections

I.7 and I.8. We need the rational analogue of the algebra P(Rd) of polyhedra; see

Definition I.9.3.

(3.2) Definitions. The real vector space spanned by the indicator functions [P ]

of rational polyhedra P ⊂ R
d is called the algebra of rational polyhedra in R

d and

denoted P(Qd). Let C(x1, . . . , xd) denote the complex vector space of all rational

functions in d variables.
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PROBLEMS.

1◦. Check that the intersection of rational polyhedra is a rational polyhedron.

2◦. Prove that P(Rd) (resp. P(Qd) ) is spanned by the indicator functions [P ]

of polyhedra P ⊂ R
d (resp. rational polyhedra P ⊂ R

d) without straight lines.

3◦. Let P ⊂ R
d be a rational polyhedron which contains a straight line. Prove

that there exists a vector m ∈ Z
d \ {0} such that P +m = P .

Hint: Assume that P =
{
x : 〈ci, x〉 ≤ αi for i = 1, . . . , n

}
for some vectors

ci ∈ Z
d and some numbers αi ∈ Z. Prove that there exists a vector u ∈ R

d \ {0}
such that 〈ci, u〉 = 0 for all i ∈ I. Deduce that one can choose u ∈ Q

d \ {0}.
Conclude that one can choose u ∈ Z

d \ {0}.

The theorem below was proved independently by A.V. Pukhlikov and A.G.

Khovanskii [PK92] and J. Lawrence [L91b].

(3.3) Theorem. There exists a map

F : P(Qd) −→ C(x1, . . . , xd)

from the algebra of rational polyhedra in R
d to the space of rational functions in d

complex variables x = (x1, . . . , xd) such that the following hold:
1. The map F is a valuation, that is, a linear transformation.
2. If P ⊂ R

d is a rational polyhedron without straight lines, then F [P ] =

f(P,x) is the rational function such that

f(P,x) =
∑

m∈P∩Zd

xm

provided the series converges absolutely.
3. For a function g ∈ P(Qd) and an integer vector m ∈ Z

d, let h(x) = g(x−m)

be the shift of g. Then F(h) = xmF(g).
4. If P ⊂ R

d is a rational polyhedron containing a straight line, then F([P ]) ≡ 0

(the rational function that is identically zero).

Proof. We know how to define F [P ] for a rational polyhedron P ⊂ R
d without

straight lines. By Lemma 3.1 there is a non-empty open set U ⊂ C
d such that the

series ∑
m∈P∩Zd

xm

converges for all x ∈ U to a rational function f(P,x). Hence we let F [P ] = f(P,x).
By Problem 2 of Section 3.2, the algebra P(Qd) is spanned by the indicator functions

of rational polyhedra [P ] without straight lines, so we may try to extend F by

linearity. To be able to do that, we should show that whenever

(3.3.1)

n∑
i=1

αi[Pi] = 0
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for rational polyhedra Pi without straight lines and real numbers αi, we must have

(3.3.2)

n∑
i=1

αif(Pi,x) ≡ 0.

Indeed, suppose that (3.3.1) holds. For a non-empty subset I ⊂ {1, . . . , n}, let

PI =
⋂
i∈I

Pi.

Using the Inclusion-Exclusion Formula (see Lemma I.7.2), we obtain that

[ ⋃
i=1

Pi

]
=
∑

I⊂{1,... ,n}
I �=∅

(−1)|I|−1[PI ].

Multiplying the above identity by [Pi], we obtain

[Pi] =
∑

I⊂{1,... ,n}
I �=∅

(−1)|I|−1[PI∪{i}].

Hence ∑
m∈Pi∩Zd

xm =
∑

I⊂{1,... ,n}
I �=∅

(−1)|I|−1
∑

m∈PI∪{i}∩Zd

xm

as formal power series. Now Pi is a rational polyhedron without straight lines and

PI∪{i} ⊂ Pi are rational polyhedra as well, so by Lemma 3.1 there is a non-empty

open set U ⊂ C
d where all involved series converge absolutely. Therefore,

(3.3.3) f(Pi,x) =
∑

I⊂{1,... ,n}
I �=∅

(−1)|I|−1f(PI∪{i},x).

Let us choose a non-empty I ⊂ {1, . . . , n}. Multiplying (3.3.1) by [PI ], we get

n∑
i=1

αi[PI∪{i}] = 0.

Therefore,
n∑

i=1

αi

( ∑
m∈PI∪{i}∩Zd

xm
)
= 0

as formal power series. Since PI is a rational polyhedron without straight lines and

PI∪{i} ⊂ PI , there is a non-empty open subset U ⊂ C
d where all series involved

converge absolutely. Therefore, for every non-empty I ⊂ {1, . . . , n}, we have

(3.3.4)

n∑
i=1

αif(PI∪{i},x) ≡ 0.
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From (3.3.3) and (3.3.4) we get (3.3.2). Thus (3.3.1) implies (3.3.2) and we can

extend F by linearity to the whole algebra P(Qd).

Since by Problem 1 of Section 3.1 F([P +m]) = xmF([P ]) for every rational

polyhedron P without straight lines and every m ∈ Z and the indicator functions

[P ] span P(Qd), Part 3 follows.

It remains to prove Part 4. Let P ⊂ R
d be a rational polyhedron with a straight

line. By Problem 3 of Section 3.2 we have P + m = P for some non-zero integer

vector m. Then by Part 3 we must have

F([P ]) = F([P +m]) = xmF([P ]).

Hence F([P ]) ≡ 0 and the proof is completed. �

(3.4) Example. Let d = 1, let P+ = [0,+∞) and let P− = (−∞, 0]. Thus P+ and

P− are rational polyhedra in R
1. Let P0 = P−∩P+ = {0} and let P = P−∪P+ = R.

We have ∑
m∈P+∩Z

xm =
∑
m≥0

xm =
1

1− x
,

where the series converges absolutely for all x such that |x| < 1. Thus by Part 2 of

Theorem 3.3, we must have

F [P+] =
1

1− x
.

Similarly, ∑
m∈P−∩Z

xm =
∑
m≤0

xm =
1

1− x−1
,

where the series converges absolutely for all x such that |x| > 1. Thus by Part 2 of

Theorem 3.3 we must have

F [P−] =
1

1− x−1
.

Now, P0 = {0}, so we must have

F [P0] = 1.

The polyhedron P is the whole line R and hence by Part 4

F [P ] = 0.

By the Inclusion-Exclusion Formula,

[P ] = [P−] + [P+]− [P0].

Then, by Part 1 we must have

0 = F [P ] = F [P−] + F [P+]−F [P0] =
1

1− x
+

1

1− x−1
− 1

=
1

1− x
− x

1− x
− 1,

which is indeed the case. Note that there are no x for which both series for F [P−]
and F [P+] converge.
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PROBLEMS.

Here is a continuous version of Theorem 3.3.

1. Prove that there exists a valuation Φ : P(Rd) −→ C(γ1, . . . , γd) such that

the following hold:

(1) If P ⊂ R
d is a polyhedron without straight lines, then Φ([P ]) is the rational

function φ(P, c) in c = (γ1, . . . , γd) such that

φ(P, c) =

∫

P

exp{〈c, x〉} dx for c = (γ1, . . . , γd)

provided the integral converges absolutely (cf. Problem 2 of Section 3.1).

(2) For a function g ∈ P(Rd) and a vector a ∈ R
d, let h(x) = g(x − a). Then

Φ(h) = exp{〈c, a〉}Φ(g).

(3) If P ⊂ R
d is a polyhedron with straight lines, then Φ(P ) ≡ 0.

2. Let P ⊂ R
d be a d-dimensional polytope defined by a system of linear

inequalities,

P =
{
x : 〈ui, x〉 ≤ αi for i = 1, . . . , n

}
,

where αi > 0 and ‖ui‖ = 1 for i = 1, . . . , n. Suppose that

Fi =
{
x ∈ P : 〈ui, x〉 = αi

}

is a facet of P for i = 1, . . . , n and let μi be the Lebesgue measure on the affine

hull of Fi. Prove that for every c ∈ C
d and every v ∈ R

d one has

〈c, v〉
∫

P

exp
{
〈c, x〉
}
dx =

n∑
i=1

〈v, ui〉
∫

Fi

exp
{
〈c, x〉
}
dμi.

Hint: Use Stokes’ Formula; see [Barv93].

4. Brion’s Theorem

In this section, we discuss the structure of the algebra of (rational) polyhedra in

more detail and obtain an important formula for the valuation F .

(4.1) Definition. Let P ⊂ R
d be a polyhedron and let v ∈ P be a point. We

define the support cone of P at v as

cone(P, v) =
{
x ∈ R

d : εx+ (1− ε)v ∈ P for some 0 < ε < 1
}
.

Strictly speaking, cone(P, v) is not a cone since it has its vertex at v.

Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



342 VIII. Lattice Points and Polyhedra

a

b
cP

a

b c

cone (

cone (

cone (P , P ,

P ,

a

b

c)

)

)

Figure 98. Example: a polyhedron P and its support cones

PROBLEMS.

1◦. Check that the support cone at v is the translation of the cone of feasible

directions at v (see Problem 2 of Section II.16.1) by the vector v.

2◦. Let P ⊂ R
d be a polyhedron defined by a system of linear inequalities

P =
{
x ∈ R

d : 〈ci, x〉 ≤ βi for i = 1, . . . , n
}

and let v ∈ P be a point. Let I = {i : 〈ci, v〉 = βi} be the set of inequalities active

on v. Prove that

cone(P, v) =
{
x ∈ R

d : 〈ci, x〉 ≤ βi for i ∈ I
}

(if I = ∅, we let cone(P, v) = R
d). In particular, the support cone of a rational

polyhedron is a rational polyhedron.

3◦. Let P ⊂ R
d be a polyhedron and let u, v ∈ P be points which lie in the

interior of the same face F of P . Prove that cone(P, v) = cone(P, u). Hence we can

talk about the support cone, denoted cone(P, F ), of a face F of P .

Our goal is to prove that “up to straight lines”, every polyhedron is the sum

of its support cones.

(4.2) Definition. Let P0(R
d) (resp. P0(Q

d)) denote the subspace of the algebra

P(Rd) (resp. P(Qd)) spanned by the indicator functions [P ] of polyhedra (resp.

rational polyhedra) with straight lines.

We start with the case of a standard simplex; cf. Problem 1 of Section I.2.2.
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(4.3) Lemma. Let Δ ⊂ R
d+1 be the standard d-dimensional simplex, Δ =

conv
(
ei : i = 1, . . . , d+1

)
, where e1, . . . , ed+1 are the standard basis vectors. Then

one can find rational polyhedra Pk ⊂ R
d, k = 1, . . . , N , such that

1. each polyhedron Pk contains a straight line parallel to ei − ej for some pair
1 ≤ i < j ≤ d+ 1;

2. we have

[
Δ
]
−

d+1∑
i=1

[
cone(Δ, ei)

]
=

N∑
k=1

αk[Pk] for some αk ∈ {−1, 1}.

In particular, modulo P0(Q
d), the indicator function of the standard simplex is the

sum of the indicator functions of the support cones at its vertices.

Proof. Let us identify R
d with the affine hull of e1, . . . , ed+1. Let H

+
i be the closed

halfspace ξi ≥ 0 in R
d. Then

Δ =

d+1⋂
i=1

H+
i and cone(Δ, ej) =

⋂
i�=j

H+
i .

By the Inclusion-Exclusion Formula (see Lemma I.7.2), we have

[Rd] =
[ d+1⋃
i=1

H+
i

]
=

∑
I⊂{1,... ,d+1}

I �=∅

(−1)|I|−1
⋂
i∈I

H+
i .

Let

PI =
⋂
i∈I

H+
i .

If I = {1, . . . , d + 1}, we have PI = Δ. If I = {1, . . . , d + 1} \ {i}, we have

P = cone(Δ, ei). All other polyhedra PI contain straight lines. In particular, if

i, j /∈ I, then PI contains a straight line in the direction of ei − ej . �

PROBLEMS.

1◦. Let cone(P, F ) be the support cone of P at a face F ⊂ P ; see Problem 3 of

Section 4.1. Let us fix a 0 < k < d. Prove that for the standard simplex Δ

[Δ]−
∑

F is a face of Δ
dimF≤k

(−1)dimF
[
cone(Δ, F )

]

is a linear combination of the indicator functions of polyhedra Pj each of which

contains a (k + 1)-dimensional affine subspace.

2◦. Let P ⊂ R
n be a rational polyhedron and let T : Rn −→ R

d be a linear

transformation with a rational matrix. Prove that T (P ) is a rational polyhedron

in R
d.
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Hint: “Rationalize” the reasoning of Section I.9.

3◦. Let P ⊂ R
n be a polyhedron, let T : Rn −→ R

d be a linear transformation

and let Q = T (P ). Let v ∈ P be a point and let u = T (v). Check that cone(Q, u) =
T
(
cone(P, v)

)
.

Next, we generalize Lemma 4.3 to (rational) polytopes.

(4.4) Lemma. Let P ⊂ R
d be a polytope (resp. rational polytope) with the vertices

v1, . . . , vm. Then we can write

[P ] = g +

m∑
i=1

[
cone(P, vi)

]

for some function g ∈ P0(R
d) (resp. for some g ∈ P0(Q

d)).

Proof. Let us consider the standard simplex Δ ⊂ R
m+1 and let T be the linear

transformation, T : Rm+1 −→ R
d such that T (ei) = vi. Then T (Δ) = P . Using

Lemma 4.3, we can write

[Δ] =

m+1∑
i=1

[
cone(Δ, ei)

]
+

N∑
k=1

αk[Qk],

where each Qk is a rational polyhedron containing a straight line in some direction

ei−ej . Linear relations among indicator functions of polyhedra are preserved under

linear transformations; see Problem 1 of Section I.9.3. Applying the transformation

T to the above identity and using Problem 3 of Section 4.3, we get

[P ] = [T (Δ)] =

m∑
i=1

[
cone(P, vi)

]
+

N∑
k=1

αk[T (Qk)].

By Problem 2 of Section 4.3, each T (Qk) is a (rational) polyhedron. Moreover, since

v1, . . . , vm are distinct, ei − ej /∈ kerT for every pair of indices i �= j. Therefore,

each polyhedron T (Qk) contains some straight line in the direction of T (ei − ej).
The proof now follows. �

PROBLEMS.

1∗. For a face F of a polytope P ⊂ R
d, let cone(P, F ) be defined as in Problem

3, Section 4.1. By convention, P is a face of itself (so cone(P, P ) = R
d). Prove

Gram’s relation, also known as the Brianchon-Gram Theorem:

[P ] =
∑
F

(−1)dimF
[
cone(P, F )

]
,

where the sum is taken over all non-empty faces F of P , including F = P .
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Remark: The following proof was suggested by J. Lawrence. Let us choose the

origin in the interior of P and let Q = P ◦ be the polar of P . Using Problem 8 of

Section VI.3.3, write

(−1)d−1[Q] =
∑
F

(−1)dimF [conv(F ∪ {0})],

where the sum is taken over all faces F �= Q of Q, including the empty face. Apply

the polarity valuation D of Theorem IV.1.5 to both sides of the identity and use

Theorem VI.1.3 to interpret the resulting identity as Gram’s relation for P .

2◦. Let P ⊂ R
d be a polyhedron with a straight line. Prove that P does not

have a vertex.

3◦. Let P1, P2 ⊂ R
d be polyhedra and let v1 ∈ P1 and v2 ∈ P2 be points. Let

us define P1 × P2 ⊂ R
d ⊕ R

d = R
2d by

P1 × P2 =
{
(x, y) : x ∈ P1, y ∈ P2

}
.

Prove that P = P1 × P2 is a polyhedron and that for v = (v1, v2), we have

cone(P1 × P2, v) = cone(P1, v1)× cone(P2, v2).

Finally, we extend Lemma 4.4. to (rational) polyhedra.

(4.5) Theorem. Let P ⊂ R
d be a polyhedron (resp. rational polyhedron). Then

[P ] = g +
∑

v is a vertex of P

[
cone(P, v)

]

for some function g ∈ P0(R
d) (resp. for some g ∈ P0(Q

d)).

In words: modulo the indicator functions of (rational) polyhedra with straight
lines, the indicator function of every (rational) polyhedron P is equal to the sum of
the indicator functions of the support cones of P at the vertices of P .

Proof. Suppose that P is defined by a system of linear inequalities

P =
{
x : 〈ci, x〉 ≤ βi, i = 1, . . . , n

}
,

where ci ∈ Z
d and βi ∈ Z. First, we observe that if P does not have vertices,

then by Lemma II.3.5 the polyhedron is either empty or contains a straight line; in

both cases the result is immediate. Suppose, therefore, that P has vertices and let

Q = conv
(
exP
)
be their convex hull. Then Q is a (rational) polytope; cf. Problem

2 of Section 2.1. Let

K =
{
x : 〈ci, x〉 ≤ 0 : i = 1, . . . , n

}
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be the recession cone of P ; see Section II.16 and, in particular, Problem 3 of Section

II.16.1. ThusK is a (rational) cone without straight lines and Lemma II.16.3 implies

that

P = Q+K.

By Lemma 4.4, we can write

[Q] =
∑

v∈ex(P )

[
cone(Q, v)

]
+
∑
i∈I

αi[Qi],

where the Qi are (rational) polyhedra with straight lines and the αi are numbers.

Let us consider R
2d as a direct sum of two copies of Rd: R

2d = R
d ⊕ R

d. For

sets X,Y ⊂ R
d, let X × Y =

{
(x, y) : x ∈ X, y ∈ Y

}
⊂ R

2d be its direct product.

Multiplying the last identity by [K], we get

[
Q×K

]
=
∑

v∈ex(P )

[
cone(Q, v)×K

]
+
∑
i∈I

αi

[
Qi ×K

]
.

For v ∈ R
d, let v = (v, 0) ∈ R

2d. Using Problem 3 of Section 4.4, we can write

[
Q×K

]
=
∑

v∈ex(P )

[
cone
(
Q×K, v

)]
+
∑
i∈I

αi

[
Qi ×K

]
.

Clearly, Qi ×K are (rational) polyhedra.

Let T : R2d −→ R
d, (x, y) �−→ x + y be the projection. Applying T to both

parts of the identity (cf. Problem 1 of Section I.9.3 and Problem 3 of Section 4.3),

we get

[P ] =
[
P +K

]
=
∑

v∈ex(P )

[
cone
(
Q+K, v

)]
+
∑
i∈I

αi

[
Qi +K

]

=
∑

v∈ex(P )

[
cone
(
P, v
)]

+
∑
i∈I

αi

[
Qi +K

]
.

Since Qi +K are (rational) polyhedra with straight lines, the result follows. �

Now we are ready to prove the main result of this section. The theorem below

was first obtained by M. Brion in 1988 [Bri88] (see also [Bri92]) by methods of

algebraic geometry. Since then many elementary proofs appeared; see, for example,

[PK92], [L91b], [BV97] and [Barv93]. We obtain the result as a corollary of

Theorem 4.5 (this is the approach of [PK92] and [L91b]).

(4.6) Corollary (Brion’s Theorem). Let F : P(Qd) −→ C(x1, . . . , xd) be the
valuation of Theorem 3.3. Then, for every rational polyhedron P ⊂ R

d, one has

F
[
P
]
=

∑
v is a vertex of P

F
[
cone(P, v)

]
.
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Proof. Follows by Theorem 3.3 and Theorem 4.5. �
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Figure 99

(4.7) Example. For the triangle P in Figure 99, there are three vertices a, b and

c and three support cones. For cone(P, a), we have

∑
m∈cone(P,a)∩Z2

xm =
∑

(μ1,μ2)∈Z2
+

xμ1

1 xμ2

2 =
1

(1− x1)(1− x2)

provided |x1|, |x2| < 1. Therefore, by Part 2 of Theorem 3.3, we have

F
[
cone(P, a)

]
=

1

(1− x1)(1− x2)
.

The support cone at b, translated to the origin, is spanned by the vectors a− b =
(−1, 0) and c− b = (−1, 1). Since we have

∣∣∣ det
(
−1 −1

0 1

) ∣∣∣ = 1,

by Corollary VII.2.6 the fundamental parallelepiped of a − b and c − b does not

contain any lattice point other than the origin. Therefore, by Lemma 1.2 we have

∑
m∈cone(P,b)

xm = xb
∑

(μ1,μ2)∈Z2
+

xμ1(a−b)+μ2(c−b) =
x1

(1− x−1
1 )(1− x−1

1 x2)
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provided x1 < 1 and |x2/x1| < 1. Hence by Part 2 of Theorem 3.3,

F
[
cone(P, b)

]
=

x1

(1− x−1
1 )(1− x−1

1 x2)
.

Similarly, we get

F
[
cone(P, c)

]
=

x2

(1− x−1
2 )(1− x1x

−1
2 )

.

Now

F
[
cone(P, a)

]
+ F
[
cone(P, b)

]
+ F
[
cone(P, c)

]

=
1

(1− x1)(1− x2)
+

x1

(1− x−1
1 )(1− x−1

1 x2)
+

x2

(1− x−1
2 )(1− x1x

−1
2 )

=
(x1 − x2)− x3

1(1− x2) + x3
2(1− x1)

(1− x1)(1− x2)(x1 − x2)
=

(x1 − x2)− (x3
1 − x3

2) + x1x2(x
2
1 − x2

2)

(1− x1)(1− x2)(x1 − x2)

=
1− (x2

1 + x1x2 + x2
2) + x1x2(x1 + x2)

(1− x1)(1− x2)

=
(1− x2

1)− (x1x2 − x2
1x2)− (x2

2 − x1x
2
2)

(1− x1)(1− x2)

=
1 + x1 − x1x2 − x2

2

1− x2
=

(1− x2
2) + x1(1− x2)

1− x2
= 1 + x1 + x2.

On the other hand, ∑
m∈P∩Z2

xm = 1 + x1 + x2,

hence we must have

F
[
P
]
= 1 + x1 + x2

and Brion’s identity indeed holds.

It is interesting to note that while each of the three rational functions corre-

sponding to the support cones of P have singularities, all the singularities cancel

each other out in the sum. We observe also that there are no values x1 and x2

for which all the three series defining F [cone(P, a)], F [cone(P, b)] and F [cone(P, c)]
simultaneously converge.

PROBLEMS.

1 (M. Brion). Let P ⊂ R
d be a rational polyhedron. Prove that

F [intP ] =
∑

v is a vertex of P

F
[
int cone(P, v)

]
,

where the interiors are taken in the affine hull of the polyhedron.

Remark: See [Bri88].

2◦. Let Φ be the valuation of Problem 1, Section 3.4. Prove that

Φ[P ] =
∑

v is a vertex of P

Φ
[
cone(P, v)

]

for any polyhedron P ⊂ R
d.
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5. The Ehrhart Polynomial of a Polytope

As an application of Brion’s Theorem (Corollary 4.6), we describe how the number

of lattice points in a polytope changes when the polytope is subjected to dilation

by an integer.

Suppose that P ⊂ R
d is a (rational) polytope. Obviously, we can compute

the number |P ∩ Z
d| of integer points in P by substituting x = (1, . . . , 1) into the

generating function

f(P,x) =
∑

m∈P∩Zd

xm.

If, however, we are to use Brion’s Theorem to evaluate f(x), we should exercise

some care since x = (1, . . . , 1) is a pole of every generating function

f
(
cone(P, v),x

)
=

∑
m∈cone(P,v)∩Zd

xm;

see Example 4.7. A way to resolve this problem is to approach the point x = 1 via

some curve and compute an appropriate limit. To see how this works, we prove

the existence of the Ehrhart polynomial, named after E. Ehrhart who first studied

them.

(5.1) Theorem. Let P ⊂ R
d be an integer polytope. Then there exists a univariate

polynomial poly, called the Ehrhart polynomial of P , of degree at most d such that
for every positive integer k we have

|kP ∩ Z
d| = poly(k).

In words: the number of integer points in the dilated polytope is a polynomial in the
coefficient of dilation.

Proof. Let v1, . . . , vn be the vertices of P , hence vi ∈ Z
d for i = 1, . . . , n. Then

the vertices of kP are kv1, . . . , kvn. Let

Ki = cone(P, vi)− vi

be the support cone of P at vi translated to the origin. Thus Ki is a rational cone

(cf. Problems 1 and 2 of Section 4.1). It is not hard to see that

cone(kP, vi) = kvi +Ki.

Applying Part 3 of Theorem 3.3, we conclude that

F
[
cone(kP, vi)

]
= xkviF [Ki].

By Corollary 4.6 and Part 2 of Theorem 3.3,

∑
m∈kP∩Zd

xm = F
[
kP
]
=

n∑
i=1

xkviF
[
Ki

]
.
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We observe that as k changes, the F [Ki] remain the same and only the xkvi change.

Applying Lemma 2.4, we conclude that

F [Ki] =
pi(x)

(1− xui1) · · · (1− xuid)
,

where ui1, . . . , uid are integer vectors and pi are Laurent polynomials in x =

(x1, . . . , xd). Thus we can write

(5.1.1)
∑

m∈kP∩Zd

xm =

n∑
i=1

xkvipi(x)

(1− xui1) · · · (1− xuid)
.

Let us choose some very special x. Let c ∈ R
d be a vector such that 〈c, uij〉 �= 0

for all i, j and let τ be a number. We substitute

x = eτc

in (5.1.1) and observe what happens as τ −→ 0, so that x approaches (1, . . . , 1).
In the left-hand side, we get

∑
m∈kP∩Zd

xm =
∑

m∈kP∩Zd

exp
{
τ 〈c,m〉

}
.

The sum is an analytic function of τ . Expanding it in the neighborhood of τ = 0,

we see that the constant term is the number |kP ∩ Z
d| of lattice points in kP . Let

us see what we get in each fraction of the right-hand side.

We have

(5.1.2)

xkvipi(x)

(1− xui1) · · · (1− xuid)

=
exp
{
τ 〈c, kvi〉

}
· pi
(
eτc
)

(
1− exp

{
τ 〈c, ui1〉

})
· · ·
(
1− exp

{
τ 〈c, uid〉

})

= τ−d exp
{
τ 〈c, kvi〉

}
pi
(
eτc
) d∏
j=1

τ

1− exp
{
τ 〈c, uij〉

} .

Now, we observe that the part

pi
(
eτc
) d∏
j=1

τ

1− exp
{
τ 〈c, uij〉

} =

∞∑
l=0

αilτ
l

is an analytic function of τ which does not depend on k at all. On the other hand,

the Laurent expansion of

τ−d exp
{
τ 〈c, kvi〉

}
= τ−d

∞∑
l=0

kl
〈c, vi〉l

l!
τ l
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contains some negative terms and does depend on k. We are interested in the

constant term of the expansion of (5.1.2). Collecting the terms, we conclude that

the constant term of (5.1.2) is

d∑
l=0

kl
〈c, vi〉l

l!
αi,d−l,

which is a polynomial in k. Equating the constant terms in (5.1.1), we get

|kP ∩ Z
d| =

n∑
i=1

d∑
l=0

kl
〈c, vi〉l

l!
αi,d−l ≡ poly(k),

which completes the proof. �

P
2P

3P

Figure 100. Example: a triangle P and its dilations 2P and 3P . One

can observe that |kP ∩ Z
2| = k2/2 + 3k/2 + 1.

PROBLEMS.

1. Let P ⊂ R
d be an integer polytope and let p(k) = |kP ∩ Z

d| be its Ehrhart

polynomial. Prove that deg p = dimP .

2. Deduce the existence of the Ehrhart polynomial for integer polygons from

Pick’s Formula; see Problem 6 of Section VII.2.6. Prove that in the case of integer

polygons the coefficients of the Ehrhart polynomial are non-negative.

3. Let P ⊂ R
d be an integer polytope and let p be its Ehrhart polynomial.

Prove that for any positive integer k we have

p(−k) = (−1)dimP
∣∣ int(kP ) ∩ Z

d
∣∣,

where the interior of a polytope is considered with respect to its affine hull (the

reciprocity relation).

Hint: Use Problem 1 of Section 4.7 and Problem 1 of Lemma 2.4.
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4. Let ad(k) denote the number of d × d matrices with non-negative integer

entries such that all row and column sums are equal to k.

a) Prove that for each d, ad(k) is a polynomial pd(k) in k of degree (d− 1)2.

Hint: See Section II.5.

b) Deduce from Problem 3 that pd(−1) = . . . = pd(−d+ 1) = 0.

5. Let P ⊂ R
d be an integer polytope such that dimP = d and let p be its

Ehrhart polynomial. Prove that the highest coefficient of p is equal to the volume

of P .

6∗. Prove that the constant term of the Ehrhart polynomial is 1.

7. Let P ⊂ R
3 be the tetrahedron with the vertices (0, 0, 0), (1, 0, 0), (0, 1, 0)

and (1, 1, n), where n > 0 is an integer parameter. Prove that the Ehrhart polyno-

mial of P is

p(k) =
n

6
k3 + k2 +

12− n

6
k + 1.

8. Let P ⊂ R
d be a rational polytope and let m be a positive integer such that

mP is an integer polytope. Let f(k) = |kP ∩ Z
d|. Let us fix a positive integer k0.

Prove that f(k0 + nm) is a polynomial in n, where n is a positive integer.

9. Let c1, . . . , cm ∈ Z
d be integer vectors and let Γ ⊂ Z

m be a set of m-tuples

a = (α1, . . . , αm) such that the polyhedron

P (a) =
{
x ∈ R

d : 〈ci, x〉 ≤ αi for i = 1, . . . ,m
}

is an integer polytope for all a ∈ Γ and any two polytopes P (a) and P (b) for

a, b ∈ Γ have the same combinatorial structure (that is, there is an inclusion-

preserving bijection between the set of faces of P (a) and the set of faces of P (b)).
Prove that there is an m-variant polynomial p such that

|P (a) ∩ Z
d| = p(a) for all a ∈ Γ.

10. Let c1, . . . , cm ∈ R
d be vectors and let Γ ⊂ R

m be a set of m-tuples

a = (α1, . . . , αm) such that the polyhedron

P (a) =
{
x ∈ R

d : 〈ci, x〉 ≤ αi for i = 1, . . . ,m
}

is a polytope for all a ∈ Γ and any two polytopes P (a) and P (b) for a, b ∈ Γ have

the same combinatorial structure. Prove that there exists an m-variant polynomial

p(a) such that

volP (a) = p(a) for all a ∈ Γ.

Hint: Cf. Problem 2 of Section 4.7, Problem 1 of Section 3.4 and Problem 2 of

Section 2.4.
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6. Example: Totally Unimodular Polytopes

In one special case, Brion’s Theorem (Corollary 4.6) gives a particularly succinct

representation of the generating function.

(6.1) Definition. Let u1, . . . , uk ∈ Z
d be linearly independent vectors and let

K = co
(
u1, . . . , uk

)
. Let Lk = span

(
u1, . . . , uk

)
and let Λk = Z

d ∩ Lk. We say

that K is a unimodular cone provided u1, . . . , uk is a basis of Λk, considered as a

lattice in Lk. We call u1, . . . , uk generators of K.

Let P ⊂ R
d be an integer polytope. We say that P is totally unimodular

provided the support cone at every vertex of P is a translation of a unimodular

cone.

Some important polytopes are totally unimodular.

PROBLEMS.

1. Let Δ be the standard (d− 1)-dimensional simplex in R
d:

Δ =
{
(ξ1, . . . , ξd) :

d∑
i=1

ξi = 1 and ξi ≥ 0 for i = 1, . . . , d
}
.

Prove that Δ is a totally unimodular polytope.

2. Let us fix positive integers m and n and let us identify R
d, d = mn, with

the space of m × n real matrices (ξij). Thus Z
d is identified with the space of all

m× n integer matrices. Let us fix positive integers α1, . . . , αm and β1, . . . , βn and

let P ⊂ R
d be the polyhedron of all non-negative m × n matrices with row sums

α1, . . . , αm and column sums β1, . . . , βn. Suppose that dimP = (m−1)(n−1) and

that P is a simple polytope; see Definition VI.5.1 (which means that α1, . . . , αm

and β1, . . . , βn are chosen in a sufficiently generic way). Prove that P is a totally

unimodular polytope.

Remark: More generally, a sufficiently generic transportation polytope (see

Section II.7) is totally unimodular. Non-negative integer matrices with prescribed

row and column sums are called contingency tables.

3. Let u1, . . . , ud ∈ Z
d be linearly independent lattice points and let K =

co
(
u1, . . . , ud

)
. Prove that K can be dissected into the union of unimodular cones,

that is, there is a decomposition

K =

n⋃
i=1

Ki,

where each cone Ki is unimodular and the intersection Ki∩Kj of every two distinct

cones Ki and Kj is a proper face of both.

4. Let K ⊂ R
d be a unimodular cone such that dimK = d. Prove that the

polar K◦ ⊂ R
d is a unimodular cone.

For totally unimodular polytopes, Brion’s Theorem (Corollary 4.6) gives a par-

ticularly nice identity.
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(6.2) Corollary. Let P ⊂ R
d be a totally unimodular polytope with the vertices

v1, . . . , vn. Suppose that dimP = k and that cone(P, vi) = vi +Ki, where Ki is a
unimodular cone with the generators ui1, . . . , uik for i = 1, . . . , n. Then

∑
m∈P∩Zd

xm =

n∑
i=1

xvi

(1− xui1) · · · (1− xuik)
.

Proof. Follows by Brion’s Theorem and Problem 3 of Section 1.2. �

PROBLEMS.

1. Let K ⊂ R
d be a unimodular cone with the generators u1, . . . , ud. Let us

define vectors u∗
1, . . . , u

∗
d by

〈ui, u
∗
j 〉 =
{

1 if i = j,

0 otherwise.

Let v ∈ Q
d be a rational vector. Prove that

F
[
K + v

]
=

xw

(1− xu1) · · · (1− xud)
, where w =

d∑
i=1

�〈v, u∗
i 〉�ui.

Here �ξ� denotes the smallest integer greater than or equal to ξ.

2. Let P ⊂ R
d be a rational polytope with the vertices v1, . . . , vn such that the

support cone of P at vi is a translation of a unimodular cone with the generators

ui1, . . . , uid. Let us define u∗
i1, . . . , u

∗
id by

〈uij , u
∗
ik〉 =
{

1 if k = j,

0 otherwise.

Prove that

∑
m∈P∩Zd

xm =

n∑
i=1

xwi

(1− xui1) · · · (1− xuid)
where wi =

d∑
j=1

�〈vi, u∗
ij〉�uij .

Here is a continuous version of Corollary 6.2.

3. Let P ⊂ R
d be a simple polytope with the vertices v1, . . . , vn. Suppose that

dimP = d and that cone(P, vi) = vi + Ki, where Ki = co
(
ui1, . . . , uid

)
for some

linearly independent vectors ui1, . . . , uid. Let αi be the volume of the parallelepiped

spanned by ui1, . . . , uid. Prove that

∫

P

exp
{
〈c, x〉
}
dx =

n∑
i=1

exp
{
〈c, vi〉
}
αi

d∏
j=1

1

〈−c, uij〉
.
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The formula of Corollary 6.2 provides a way to compute the number of points

in a totally unimodular polytope P by specializing x = (1, . . . , 1). Of course, one

should do it carefully because of the singularities in the right-hand side. One way

to do it is to choose a vector c ∈ R
d such that 〈c, uij〉 �= 0 for all i and j, substitute

x = eτc, where τ is a real parameter, and compute the constant term of the Laurent

expansion of the left-hand side in the neighborhood of τ = 0, as we did in the proof

of Theorem 5.1. Another possibility is to substitute x sufficiently close to (1, . . . , 1)
and round the result to the nearest integer.

(6.3) The duality trick. It happens sometimes that a polytope P is rather close

to being totally unimodular and yet is not totally unimodular. For example, if the

transportation polytope P in Problem 2 of Section 6.1 is not simple, it cannot be

totally unimodular. Then it becomes a problem to compute F [K], where K is the

translation to the origin of the support cone of P at some integer vertex v.

A computationally efficient way to handle F [K] is as follows. Suppose, for

simplicity, that K ⊂ R
d is a d-dimensional rational cone. Let K◦ ⊂ R

d be the polar

of K. Let us dissect (or otherwise decompose) K◦ into the union of unimodular

cones; see Problem 3 of Section 6.1. Thus, by the Inclusion-Exclusion Formula, we

can write

[
K◦] =

n∑
i=1

[Ki] ± indicators of lower-dimensional rational cones,

where Ki ⊂ R
d are d-dimensional unimodular cones. Polarity preserves linear

relations between closed cones; see Corollary IV.1.6. By the Bipolar Theorem

(Theorem IV.1.2), we have (K◦)◦ = K. Moreover, polars of lower-dimensional

rational cones are rational cones containing straight lines. Hence we can write

[K] =

n∑
i=1

[K◦
i ] ± indicators of rational cones containing straight lines.

By Theorem 3.3, Part 4, valuation F ignores rational polyhedra with straight lines

and hence

F [K] =

n∑
i=1

F [K◦
i ].

By Problem 4 of Section 6.1, K◦
i are unimodular cones. Hence we get a closed

formula for F [K].

The computational savings for passing to the polar cones and then going back

compared to the direct decomposition of K into unimodular cones are twofold.

First, we are able to ignore the lower-dimensional cones completely. Second, in

many problems it is much easier to decompose the polar cone K◦ into unimodular

cones. Suppose, for example, that P is a transportation polytope of Problem 2,

Section 6.1. Let v be a vertex of P and let K = cone(P, v) − v. Let us consider

K as a cone in the subspace L = aff(P ) − v and let K◦ ⊂ L be its polar in that

subspace. Then any triangulation of K◦ produces totally unimodular cones. Thus
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356 VIII. Lattice Points and Polyhedra

if P is sufficiently close to being a simple polytope, we get a closed formula for the

generating function

F [P ] =
∑

m∈P∩Zd

xm.

7. Remarks

Gram’s relation or the Brianchon-Gram Theorem expresses the indicator function

of a polyhedron P as an alternating sum of the indicators of the support cones at

the bounded faces of P (cf. Problem 1 of Section 4.4 where the formula is stated

for polytopes). It is discussed, for example, in [L91a].

Triangulations, which we discussed very briefly (see Lemma 2.3), are discussed

in detail in [Z95].

A survey of results pertaining to this chapter (with an algorithmic slant) can

be found in [BP99]. An implementation of the algorithm for counting contingency

tables based on Brion’s Theorem (see Problem 2 of Section 6.1) is found in [DS+].

For Ehrhart polynomials and their interesting properties, see Chapter IV of

[St97]. An analytical approach leading to interesting closed formulas is found

in [DR97]. For extension to lattice semigroups (cf. Problem 3 of Section 3.1),

see [Kho95] and [BP99]. Lattice points in irrational polytopes exhibit a very

interesting behavior [Sk98]. That topic, however, is beyond the scope of this book.
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Slater’s, 171

stability, 170

cone, 65

C+, 161

L1
+, 161

L∞
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d-realizable, 94
chordal, 97

realizable, 94
Grassmannian, 36, 246

halfspace

closed, 23, 43
open, 23, 43
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reduced, 319

covering radius of, 311
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maximum, 189

problem
Assignment, 58
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of uniform (Chebyshev) approximation, 24,
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R
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Licensed to Georgia Inst of Tech.  Prepared on Sun Jan 14 21:00:56 EST 2024for download from IP 188.92.139.72.



366 Index

of continuous functions, 113, 133
of signed Borel measures, 133
projective, 86
quotient, 42
topological, 109

vector, 110

topological vector
locally convex, 119

vector, 5
spherical angle, 149
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GSM/54

Convexity is a simple idea that manifests itself in a surprising variety of places. 
This fertile fi eld has an immensely rich structure and numerous applications. 
Barvinok demonstrates that simplicity, intuitive appeal, and the universality of 
applications make teaching (and learning) convexity a gratifying experience. The 
book will benefi t both teacher and student: It is easy to understand, entertaining 
to the reader, and includes many exercises that vary in degree of diffi culty. 
Overall, the author demonstrates the power of a few simple unifying principles 
in a variety of pure and applied problems.

The prerequisites are minimal amounts of linear algebra, analysis, and elemen-
tary topology, plus basic computational skills. Portions of the book could be 
used by advanced undergraduates. As a whole, it is designed for graduate 
students interested in mathematical methods, computer science, electrical engi-
neering, and operations research. The book will also be of interest to research 
mathematicians, who will fi nd some results that are recent, some that are new, 
and many known results that are discussed from a new perspective.

AMS on the Web

For additional information
and updates on this book, visit
www.ams.org/bookpages/gsm-54

www.ams.org
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